Metamath Proof Explorer


Theorem dihcnvcl

Description: Closure of isomorphism H converse. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dihfn.b
|- B = ( Base ` K )
dihfn.h
|- H = ( LHyp ` K )
dihfn.i
|- I = ( ( DIsoH ` K ) ` W )
Assertion dihcnvcl
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. B )

Proof

Step Hyp Ref Expression
1 dihfn.b
 |-  B = ( Base ` K )
2 dihfn.h
 |-  H = ( LHyp ` K )
3 dihfn.i
 |-  I = ( ( DIsoH ` K ) ` W )
4 eqid
 |-  ( ( DVecH ` K ) ` W ) = ( ( DVecH ` K ) ` W )
5 eqid
 |-  ( LSubSp ` ( ( DVecH ` K ) ` W ) ) = ( LSubSp ` ( ( DVecH ` K ) ` W ) )
6 1 2 3 4 5 dihf11
 |-  ( ( K e. HL /\ W e. H ) -> I : B -1-1-> ( LSubSp ` ( ( DVecH ` K ) ` W ) ) )
7 f1f1orn
 |-  ( I : B -1-1-> ( LSubSp ` ( ( DVecH ` K ) ` W ) ) -> I : B -1-1-onto-> ran I )
8 6 7 syl
 |-  ( ( K e. HL /\ W e. H ) -> I : B -1-1-onto-> ran I )
9 f1ocnvdm
 |-  ( ( I : B -1-1-onto-> ran I /\ X e. ran I ) -> ( `' I ` X ) e. B )
10 8 9 sylan
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> ( `' I ` X ) e. B )