Metamath Proof Explorer


Theorem dihglblem2aN

Description: Lemma for isomorphism H of a GLB. (Contributed by NM, 19-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem.b
|- B = ( Base ` K )
dihglblem.l
|- .<_ = ( le ` K )
dihglblem.m
|- ./\ = ( meet ` K )
dihglblem.g
|- G = ( glb ` K )
dihglblem.h
|- H = ( LHyp ` K )
dihglblem.t
|- T = { u e. B | E. v e. S u = ( v ./\ W ) }
Assertion dihglblem2aN
|- ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> T =/= (/) )

Proof

Step Hyp Ref Expression
1 dihglblem.b
 |-  B = ( Base ` K )
2 dihglblem.l
 |-  .<_ = ( le ` K )
3 dihglblem.m
 |-  ./\ = ( meet ` K )
4 dihglblem.g
 |-  G = ( glb ` K )
5 dihglblem.h
 |-  H = ( LHyp ` K )
6 dihglblem.t
 |-  T = { u e. B | E. v e. S u = ( v ./\ W ) }
7 6 a1i
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> T = { u e. B | E. v e. S u = ( v ./\ W ) } )
8 simprr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> S =/= (/) )
9 n0
 |-  ( S =/= (/) <-> E. z z e. S )
10 8 9 sylib
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> E. z z e. S )
11 hllat
 |-  ( K e. HL -> K e. Lat )
12 11 ad3antrrr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> K e. Lat )
13 simplrl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> S C_ B )
14 simpr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> z e. S )
15 13 14 sseldd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> z e. B )
16 1 5 lhpbase
 |-  ( W e. H -> W e. B )
17 16 ad3antlr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> W e. B )
18 1 3 latmcl
 |-  ( ( K e. Lat /\ z e. B /\ W e. B ) -> ( z ./\ W ) e. B )
19 12 15 17 18 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> ( z ./\ W ) e. B )
20 eqidd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> ( z ./\ W ) = ( z ./\ W ) )
21 oveq1
 |-  ( v = z -> ( v ./\ W ) = ( z ./\ W ) )
22 21 rspceeqv
 |-  ( ( z e. S /\ ( z ./\ W ) = ( z ./\ W ) ) -> E. v e. S ( z ./\ W ) = ( v ./\ W ) )
23 14 20 22 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> E. v e. S ( z ./\ W ) = ( v ./\ W ) )
24 ovex
 |-  ( z ./\ W ) e. _V
25 eleq1
 |-  ( w = ( z ./\ W ) -> ( w e. { u e. B | E. v e. S u = ( v ./\ W ) } <-> ( z ./\ W ) e. { u e. B | E. v e. S u = ( v ./\ W ) } ) )
26 eqeq1
 |-  ( u = ( z ./\ W ) -> ( u = ( v ./\ W ) <-> ( z ./\ W ) = ( v ./\ W ) ) )
27 26 rexbidv
 |-  ( u = ( z ./\ W ) -> ( E. v e. S u = ( v ./\ W ) <-> E. v e. S ( z ./\ W ) = ( v ./\ W ) ) )
28 27 elrab
 |-  ( ( z ./\ W ) e. { u e. B | E. v e. S u = ( v ./\ W ) } <-> ( ( z ./\ W ) e. B /\ E. v e. S ( z ./\ W ) = ( v ./\ W ) ) )
29 25 28 bitrdi
 |-  ( w = ( z ./\ W ) -> ( w e. { u e. B | E. v e. S u = ( v ./\ W ) } <-> ( ( z ./\ W ) e. B /\ E. v e. S ( z ./\ W ) = ( v ./\ W ) ) ) )
30 24 29 spcev
 |-  ( ( ( z ./\ W ) e. B /\ E. v e. S ( z ./\ W ) = ( v ./\ W ) ) -> E. w w e. { u e. B | E. v e. S u = ( v ./\ W ) } )
31 19 23 30 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> E. w w e. { u e. B | E. v e. S u = ( v ./\ W ) } )
32 n0
 |-  ( { u e. B | E. v e. S u = ( v ./\ W ) } =/= (/) <-> E. w w e. { u e. B | E. v e. S u = ( v ./\ W ) } )
33 31 32 sylibr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) /\ z e. S ) -> { u e. B | E. v e. S u = ( v ./\ W ) } =/= (/) )
34 10 33 exlimddv
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> { u e. B | E. v e. S u = ( v ./\ W ) } =/= (/) )
35 7 34 eqnetrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( S C_ B /\ S =/= (/) ) ) -> T =/= (/) )