Metamath Proof Explorer


Theorem dihrnss

Description: The isomorphism H maps to a set of vectors. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihrnss.h
|- H = ( LHyp ` K )
dihrnss.u
|- U = ( ( DVecH ` K ) ` W )
dihrnss.i
|- I = ( ( DIsoH ` K ) ` W )
dihrnss.v
|- V = ( Base ` U )
Assertion dihrnss
|- ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ V )

Proof

Step Hyp Ref Expression
1 dihrnss.h
 |-  H = ( LHyp ` K )
2 dihrnss.u
 |-  U = ( ( DVecH ` K ) ` W )
3 dihrnss.i
 |-  I = ( ( DIsoH ` K ) ` W )
4 dihrnss.v
 |-  V = ( Base ` U )
5 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
6 1 2 3 5 dihrnlss
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X e. ( LSubSp ` U ) )
7 4 5 lssss
 |-  ( X e. ( LSubSp ` U ) -> X C_ V )
8 6 7 syl
 |-  ( ( ( K e. HL /\ W e. H ) /\ X e. ran I ) -> X C_ V )