Step |
Hyp |
Ref |
Expression |
1 |
|
dilset.a |
|- A = ( Atoms ` K ) |
2 |
|
dilset.s |
|- S = ( PSubSp ` K ) |
3 |
|
dilset.w |
|- W = ( WAtoms ` K ) |
4 |
|
dilset.m |
|- M = ( PAut ` K ) |
5 |
|
dilset.l |
|- L = ( Dil ` K ) |
6 |
1 2 3 4 5
|
dilfsetN |
|- ( K e. B -> L = ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) ) |
7 |
6
|
fveq1d |
|- ( K e. B -> ( L ` D ) = ( ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) ` D ) ) |
8 |
|
fveq2 |
|- ( d = D -> ( W ` d ) = ( W ` D ) ) |
9 |
8
|
sseq2d |
|- ( d = D -> ( x C_ ( W ` d ) <-> x C_ ( W ` D ) ) ) |
10 |
9
|
imbi1d |
|- ( d = D -> ( ( x C_ ( W ` d ) -> ( f ` x ) = x ) <-> ( x C_ ( W ` D ) -> ( f ` x ) = x ) ) ) |
11 |
10
|
ralbidv |
|- ( d = D -> ( A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) <-> A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) ) ) |
12 |
11
|
rabbidv |
|- ( d = D -> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } = { f e. M | A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) } ) |
13 |
|
eqid |
|- ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) = ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) |
14 |
4
|
fvexi |
|- M e. _V |
15 |
14
|
rabex |
|- { f e. M | A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) } e. _V |
16 |
12 13 15
|
fvmpt |
|- ( D e. A -> ( ( d e. A |-> { f e. M | A. x e. S ( x C_ ( W ` d ) -> ( f ` x ) = x ) } ) ` D ) = { f e. M | A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) } ) |
17 |
7 16
|
sylan9eq |
|- ( ( K e. B /\ D e. A ) -> ( L ` D ) = { f e. M | A. x e. S ( x C_ ( W ` D ) -> ( f ` x ) = x ) } ) |