Step |
Hyp |
Ref |
Expression |
1 |
|
dip0r.1 |
|- X = ( BaseSet ` U ) |
2 |
|
dip0r.5 |
|- Z = ( 0vec ` U ) |
3 |
|
dip0r.7 |
|- P = ( .iOLD ` U ) |
4 |
1 2
|
nvzcl |
|- ( U e. NrmCVec -> Z e. X ) |
5 |
4
|
adantr |
|- ( ( U e. NrmCVec /\ A e. X ) -> Z e. X ) |
6 |
1 3
|
dipcj |
|- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( * ` ( A P Z ) ) = ( Z P A ) ) |
7 |
5 6
|
mpd3an3 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( * ` ( A P Z ) ) = ( Z P A ) ) |
8 |
1 2 3
|
dip0r |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P Z ) = 0 ) |
9 |
8
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( * ` ( A P Z ) ) = ( * ` 0 ) ) |
10 |
|
cj0 |
|- ( * ` 0 ) = 0 |
11 |
9 10
|
eqtrdi |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( * ` ( A P Z ) ) = 0 ) |
12 |
7 11
|
eqtr3d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( Z P A ) = 0 ) |