| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dip0r.1 |
|- X = ( BaseSet ` U ) |
| 2 |
|
dip0r.5 |
|- Z = ( 0vec ` U ) |
| 3 |
|
dip0r.7 |
|- P = ( .iOLD ` U ) |
| 4 |
1 2
|
nvzcl |
|- ( U e. NrmCVec -> Z e. X ) |
| 5 |
4
|
adantr |
|- ( ( U e. NrmCVec /\ A e. X ) -> Z e. X ) |
| 6 |
|
eqid |
|- ( +v ` U ) = ( +v ` U ) |
| 7 |
|
eqid |
|- ( .sOLD ` U ) = ( .sOLD ` U ) |
| 8 |
|
eqid |
|- ( normCV ` U ) = ( normCV ` U ) |
| 9 |
1 6 7 8 3
|
ipval2 |
|- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( A P Z ) = ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 10 |
5 9
|
mpd3an3 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P Z ) = ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 11 |
|
neg1cn |
|- -u 1 e. CC |
| 12 |
7 2
|
nvsz |
|- ( ( U e. NrmCVec /\ -u 1 e. CC ) -> ( -u 1 ( .sOLD ` U ) Z ) = Z ) |
| 13 |
11 12
|
mpan2 |
|- ( U e. NrmCVec -> ( -u 1 ( .sOLD ` U ) Z ) = Z ) |
| 14 |
13
|
adantr |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) Z ) = Z ) |
| 15 |
14
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) = ( A ( +v ` U ) Z ) ) |
| 16 |
15
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) = ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ) |
| 17 |
16
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) = ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) ) |
| 18 |
17
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) ) ) |
| 19 |
1 6 7 8 3
|
ipval2lem3 |
|- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) e. RR ) |
| 20 |
5 19
|
mpd3an3 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) e. CC ) |
| 22 |
21
|
subidd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) ) = 0 ) |
| 23 |
18 22
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = 0 ) |
| 24 |
|
negicn |
|- -u _i e. CC |
| 25 |
7 2
|
nvsz |
|- ( ( U e. NrmCVec /\ -u _i e. CC ) -> ( -u _i ( .sOLD ` U ) Z ) = Z ) |
| 26 |
24 25
|
mpan2 |
|- ( U e. NrmCVec -> ( -u _i ( .sOLD ` U ) Z ) = Z ) |
| 27 |
|
ax-icn |
|- _i e. CC |
| 28 |
7 2
|
nvsz |
|- ( ( U e. NrmCVec /\ _i e. CC ) -> ( _i ( .sOLD ` U ) Z ) = Z ) |
| 29 |
27 28
|
mpan2 |
|- ( U e. NrmCVec -> ( _i ( .sOLD ` U ) Z ) = Z ) |
| 30 |
26 29
|
eqtr4d |
|- ( U e. NrmCVec -> ( -u _i ( .sOLD ` U ) Z ) = ( _i ( .sOLD ` U ) Z ) ) |
| 31 |
30
|
adantr |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( -u _i ( .sOLD ` U ) Z ) = ( _i ( .sOLD ` U ) Z ) ) |
| 32 |
31
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) = ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) |
| 33 |
32
|
fveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) = ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ) |
| 34 |
33
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) = ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) |
| 35 |
34
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) |
| 36 |
1 6 7 8 3
|
ipval2lem4 |
|- ( ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) /\ _i e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) e. CC ) |
| 37 |
27 36
|
mpan2 |
|- ( ( U e. NrmCVec /\ A e. X /\ Z e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) e. CC ) |
| 38 |
5 37
|
mpd3an3 |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) e. CC ) |
| 39 |
38
|
subidd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = 0 ) |
| 40 |
35 39
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) = 0 ) |
| 41 |
40
|
oveq2d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) = ( _i x. 0 ) ) |
| 42 |
23 41
|
oveq12d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) = ( 0 + ( _i x. 0 ) ) ) |
| 43 |
|
it0e0 |
|- ( _i x. 0 ) = 0 |
| 44 |
43
|
oveq2i |
|- ( 0 + ( _i x. 0 ) ) = ( 0 + 0 ) |
| 45 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 46 |
44 45
|
eqtri |
|- ( 0 + ( _i x. 0 ) ) = 0 |
| 47 |
42 46
|
eqtrdi |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) = 0 ) |
| 48 |
47
|
oveq1d |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) / 4 ) = ( 0 / 4 ) ) |
| 49 |
|
4cn |
|- 4 e. CC |
| 50 |
|
4ne0 |
|- 4 =/= 0 |
| 51 |
49 50
|
div0i |
|- ( 0 / 4 ) = 0 |
| 52 |
48 51
|
eqtrdi |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( ( ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) Z ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) + ( _i x. ( ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) - ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( -u _i ( .sOLD ` U ) Z ) ) ) ^ 2 ) ) ) ) / 4 ) = 0 ) |
| 53 |
10 52
|
eqtrd |
|- ( ( U e. NrmCVec /\ A e. X ) -> ( A P Z ) = 0 ) |