Step |
Hyp |
Ref |
Expression |
1 |
|
ipass.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ipass.4 |
|- S = ( .sOLD ` U ) |
3 |
|
ipass.7 |
|- P = ( .iOLD ` U ) |
4 |
|
cjcl |
|- ( B e. CC -> ( * ` B ) e. CC ) |
5 |
1 2 3
|
dipassr |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ ( * ` B ) e. CC /\ C e. X ) ) -> ( A P ( ( * ` B ) S C ) ) = ( ( * ` ( * ` B ) ) x. ( A P C ) ) ) |
6 |
4 5
|
syl3anr2 |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( A P ( ( * ` B ) S C ) ) = ( ( * ` ( * ` B ) ) x. ( A P C ) ) ) |
7 |
|
cjcj |
|- ( B e. CC -> ( * ` ( * ` B ) ) = B ) |
8 |
7
|
3ad2ant2 |
|- ( ( A e. X /\ B e. CC /\ C e. X ) -> ( * ` ( * ` B ) ) = B ) |
9 |
8
|
adantl |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( * ` B ) ) = B ) |
10 |
9
|
oveq1d |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( ( * ` ( * ` B ) ) x. ( A P C ) ) = ( B x. ( A P C ) ) ) |
11 |
6 10
|
eqtrd |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( A P ( ( * ` B ) S C ) ) = ( B x. ( A P C ) ) ) |