| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ipcl.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | ipcl.7 |  |-  P = ( .iOLD ` U ) | 
						
							| 3 |  | eqid |  |-  ( +v ` U ) = ( +v ` U ) | 
						
							| 4 |  | eqid |  |-  ( .sOLD ` U ) = ( .sOLD ` U ) | 
						
							| 5 |  | eqid |  |-  ( normCV ` U ) = ( normCV ` U ) | 
						
							| 6 | 1 3 4 5 2 | ipval |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) ) | 
						
							| 7 |  | fzfid |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( 1 ... 4 ) e. Fin ) | 
						
							| 8 |  | ax-icn |  |-  _i e. CC | 
						
							| 9 |  | elfznn |  |-  ( k e. ( 1 ... 4 ) -> k e. NN ) | 
						
							| 10 | 9 | nnnn0d |  |-  ( k e. ( 1 ... 4 ) -> k e. NN0 ) | 
						
							| 11 |  | expcl |  |-  ( ( _i e. CC /\ k e. NN0 ) -> ( _i ^ k ) e. CC ) | 
						
							| 12 | 8 10 11 | sylancr |  |-  ( k e. ( 1 ... 4 ) -> ( _i ^ k ) e. CC ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( _i ^ k ) e. CC ) | 
						
							| 14 | 1 3 4 5 2 | ipval2lem4 |  |-  ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ ( _i ^ k ) e. CC ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) | 
						
							| 15 | 12 14 | sylan2 |  |-  ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) e. CC ) | 
						
							| 16 | 13 15 | mulcld |  |-  ( ( ( U e. NrmCVec /\ A e. X /\ B e. X ) /\ k e. ( 1 ... 4 ) ) -> ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) | 
						
							| 17 | 7 16 | fsumcl |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC ) | 
						
							| 18 |  | 4cn |  |-  4 e. CC | 
						
							| 19 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 20 |  | divcl |  |-  ( ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC /\ 4 e. CC /\ 4 =/= 0 ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) | 
						
							| 21 | 18 19 20 | mp3an23 |  |-  ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) e. CC -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) | 
						
							| 22 | 17 21 | syl |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( A ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) B ) ) ) ^ 2 ) ) / 4 ) e. CC ) | 
						
							| 23 | 6 22 | eqeltrd |  |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |