| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dipfval.1 |  |-  X = ( BaseSet ` U ) | 
						
							| 2 |  | dipfval.2 |  |-  G = ( +v ` U ) | 
						
							| 3 |  | dipfval.4 |  |-  S = ( .sOLD ` U ) | 
						
							| 4 |  | dipfval.6 |  |-  N = ( normCV ` U ) | 
						
							| 5 |  | dipfval.7 |  |-  P = ( .iOLD ` U ) | 
						
							| 6 |  | fveq2 |  |-  ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) | 
						
							| 7 | 6 1 | eqtr4di |  |-  ( u = U -> ( BaseSet ` u ) = X ) | 
						
							| 8 |  | fveq2 |  |-  ( u = U -> ( normCV ` u ) = ( normCV ` U ) ) | 
						
							| 9 | 8 4 | eqtr4di |  |-  ( u = U -> ( normCV ` u ) = N ) | 
						
							| 10 |  | fveq2 |  |-  ( u = U -> ( +v ` u ) = ( +v ` U ) ) | 
						
							| 11 | 10 2 | eqtr4di |  |-  ( u = U -> ( +v ` u ) = G ) | 
						
							| 12 |  | eqidd |  |-  ( u = U -> x = x ) | 
						
							| 13 |  | fveq2 |  |-  ( u = U -> ( .sOLD ` u ) = ( .sOLD ` U ) ) | 
						
							| 14 | 13 3 | eqtr4di |  |-  ( u = U -> ( .sOLD ` u ) = S ) | 
						
							| 15 | 14 | oveqd |  |-  ( u = U -> ( ( _i ^ k ) ( .sOLD ` u ) y ) = ( ( _i ^ k ) S y ) ) | 
						
							| 16 | 11 12 15 | oveq123d |  |-  ( u = U -> ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) = ( x G ( ( _i ^ k ) S y ) ) ) | 
						
							| 17 | 9 16 | fveq12d |  |-  ( u = U -> ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) = ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( u = U -> ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) = ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) | 
						
							| 19 | 18 | oveq2d |  |-  ( u = U -> ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) = ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) | 
						
							| 20 | 19 | sumeq2sdv |  |-  ( u = U -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) = sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) | 
						
							| 21 | 20 | oveq1d |  |-  ( u = U -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) | 
						
							| 22 | 7 7 21 | mpoeq123dv |  |-  ( u = U -> ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) | 
						
							| 23 |  | df-dip |  |-  .iOLD = ( u e. NrmCVec |-> ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) ) | 
						
							| 24 | 1 | fvexi |  |-  X e. _V | 
						
							| 25 | 24 24 | mpoex |  |-  ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) e. _V | 
						
							| 26 | 22 23 25 | fvmpt |  |-  ( U e. NrmCVec -> ( .iOLD ` U ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) | 
						
							| 27 | 5 26 | eqtrid |  |-  ( U e. NrmCVec -> P = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |