Step |
Hyp |
Ref |
Expression |
1 |
|
dipfval.1 |
|- X = ( BaseSet ` U ) |
2 |
|
dipfval.2 |
|- G = ( +v ` U ) |
3 |
|
dipfval.4 |
|- S = ( .sOLD ` U ) |
4 |
|
dipfval.6 |
|- N = ( normCV ` U ) |
5 |
|
dipfval.7 |
|- P = ( .iOLD ` U ) |
6 |
|
fveq2 |
|- ( u = U -> ( BaseSet ` u ) = ( BaseSet ` U ) ) |
7 |
6 1
|
eqtr4di |
|- ( u = U -> ( BaseSet ` u ) = X ) |
8 |
|
fveq2 |
|- ( u = U -> ( normCV ` u ) = ( normCV ` U ) ) |
9 |
8 4
|
eqtr4di |
|- ( u = U -> ( normCV ` u ) = N ) |
10 |
|
fveq2 |
|- ( u = U -> ( +v ` u ) = ( +v ` U ) ) |
11 |
10 2
|
eqtr4di |
|- ( u = U -> ( +v ` u ) = G ) |
12 |
|
eqidd |
|- ( u = U -> x = x ) |
13 |
|
fveq2 |
|- ( u = U -> ( .sOLD ` u ) = ( .sOLD ` U ) ) |
14 |
13 3
|
eqtr4di |
|- ( u = U -> ( .sOLD ` u ) = S ) |
15 |
14
|
oveqd |
|- ( u = U -> ( ( _i ^ k ) ( .sOLD ` u ) y ) = ( ( _i ^ k ) S y ) ) |
16 |
11 12 15
|
oveq123d |
|- ( u = U -> ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) = ( x G ( ( _i ^ k ) S y ) ) ) |
17 |
9 16
|
fveq12d |
|- ( u = U -> ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) = ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ) |
18 |
17
|
oveq1d |
|- ( u = U -> ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) = ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) |
19 |
18
|
oveq2d |
|- ( u = U -> ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) = ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) |
20 |
19
|
sumeq2sdv |
|- ( u = U -> sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) = sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) ) |
21 |
20
|
oveq1d |
|- ( u = U -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) |
22 |
7 7 21
|
mpoeq123dv |
|- ( u = U -> ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |
23 |
|
df-dip |
|- .iOLD = ( u e. NrmCVec |-> ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) ) |
24 |
1
|
fvexi |
|- X e. _V |
25 |
24 24
|
mpoex |
|- ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) e. _V |
26 |
22 23 25
|
fvmpt |
|- ( U e. NrmCVec -> ( .iOLD ` U ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |
27 |
5 26
|
syl5eq |
|- ( U e. NrmCVec -> P = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( N ` ( x G ( ( _i ^ k ) S y ) ) ) ^ 2 ) ) / 4 ) ) ) |