Step |
Hyp |
Ref |
Expression |
1 |
|
ipsubdir.1 |
|- X = ( BaseSet ` U ) |
2 |
|
ipsubdir.3 |
|- M = ( -v ` U ) |
3 |
|
ipsubdir.7 |
|- P = ( .iOLD ` U ) |
4 |
|
id |
|- ( ( C e. X /\ B e. X /\ A e. X ) -> ( C e. X /\ B e. X /\ A e. X ) ) |
5 |
4
|
3com13 |
|- ( ( A e. X /\ B e. X /\ C e. X ) -> ( C e. X /\ B e. X /\ A e. X ) ) |
6 |
|
id |
|- ( ( B e. X /\ C e. X /\ A e. X ) -> ( B e. X /\ C e. X /\ A e. X ) ) |
7 |
6
|
3com12 |
|- ( ( C e. X /\ B e. X /\ A e. X ) -> ( B e. X /\ C e. X /\ A e. X ) ) |
8 |
1 2 3
|
dipsubdir |
|- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X /\ A e. X ) ) -> ( ( B M C ) P A ) = ( ( B P A ) - ( C P A ) ) ) |
9 |
7 8
|
sylan2 |
|- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( ( B M C ) P A ) = ( ( B P A ) - ( C P A ) ) ) |
10 |
9
|
fveq2d |
|- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B M C ) P A ) ) = ( * ` ( ( B P A ) - ( C P A ) ) ) ) |
11 |
|
phnv |
|- ( U e. CPreHilOLD -> U e. NrmCVec ) |
12 |
|
simpl |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> U e. NrmCVec ) |
13 |
1 2
|
nvmcl |
|- ( ( U e. NrmCVec /\ B e. X /\ C e. X ) -> ( B M C ) e. X ) |
14 |
13
|
3com23 |
|- ( ( U e. NrmCVec /\ C e. X /\ B e. X ) -> ( B M C ) e. X ) |
15 |
14
|
3adant3r3 |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( B M C ) e. X ) |
16 |
|
simpr3 |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> A e. X ) |
17 |
1 3
|
dipcj |
|- ( ( U e. NrmCVec /\ ( B M C ) e. X /\ A e. X ) -> ( * ` ( ( B M C ) P A ) ) = ( A P ( B M C ) ) ) |
18 |
12 15 16 17
|
syl3anc |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B M C ) P A ) ) = ( A P ( B M C ) ) ) |
19 |
11 18
|
sylan |
|- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B M C ) P A ) ) = ( A P ( B M C ) ) ) |
20 |
1 3
|
dipcl |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B P A ) e. CC ) |
21 |
20
|
3adant3r1 |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( B P A ) e. CC ) |
22 |
1 3
|
dipcl |
|- ( ( U e. NrmCVec /\ C e. X /\ A e. X ) -> ( C P A ) e. CC ) |
23 |
22
|
3adant3r2 |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( C P A ) e. CC ) |
24 |
|
cjsub |
|- ( ( ( B P A ) e. CC /\ ( C P A ) e. CC ) -> ( * ` ( ( B P A ) - ( C P A ) ) ) = ( ( * ` ( B P A ) ) - ( * ` ( C P A ) ) ) ) |
25 |
21 23 24
|
syl2anc |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B P A ) - ( C P A ) ) ) = ( ( * ` ( B P A ) ) - ( * ` ( C P A ) ) ) ) |
26 |
1 3
|
dipcj |
|- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
27 |
26
|
3adant3r1 |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
28 |
1 3
|
dipcj |
|- ( ( U e. NrmCVec /\ C e. X /\ A e. X ) -> ( * ` ( C P A ) ) = ( A P C ) ) |
29 |
28
|
3adant3r2 |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( C P A ) ) = ( A P C ) ) |
30 |
27 29
|
oveq12d |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( ( * ` ( B P A ) ) - ( * ` ( C P A ) ) ) = ( ( A P B ) - ( A P C ) ) ) |
31 |
25 30
|
eqtrd |
|- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B P A ) - ( C P A ) ) ) = ( ( A P B ) - ( A P C ) ) ) |
32 |
11 31
|
sylan |
|- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B P A ) - ( C P A ) ) ) = ( ( A P B ) - ( A P C ) ) ) |
33 |
10 19 32
|
3eqtr3d |
|- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( A P ( B M C ) ) = ( ( A P B ) - ( A P C ) ) ) |
34 |
5 33
|
sylan2 |
|- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A P ( B M C ) ) = ( ( A P B ) - ( A P C ) ) ) |