Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum.u |
|- U = ( Unit ` Z ) |
5 |
|
rpvmasum.b |
|- ( ph -> A e. U ) |
6 |
|
rpvmasum.t |
|- T = ( `' L " { A } ) |
7 |
|
nnex |
|- NN e. _V |
8 |
|
inss1 |
|- ( Prime i^i T ) C_ Prime |
9 |
|
prmssnn |
|- Prime C_ NN |
10 |
8 9
|
sstri |
|- ( Prime i^i T ) C_ NN |
11 |
|
ssdomg |
|- ( NN e. _V -> ( ( Prime i^i T ) C_ NN -> ( Prime i^i T ) ~<_ NN ) ) |
12 |
7 10 11
|
mp2 |
|- ( Prime i^i T ) ~<_ NN |
13 |
12
|
a1i |
|- ( ph -> ( Prime i^i T ) ~<_ NN ) |
14 |
|
logno1 |
|- -. ( x e. RR+ |-> ( log ` x ) ) e. O(1) |
15 |
3
|
adantr |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> N e. NN ) |
16 |
15
|
phicld |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( phi ` N ) e. NN ) |
17 |
16
|
nnred |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( phi ` N ) e. RR ) |
18 |
17
|
adantr |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ x e. RR+ ) -> ( phi ` N ) e. RR ) |
19 |
|
simpr |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( Prime i^i T ) e. Fin ) |
20 |
|
inss2 |
|- ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ ( Prime i^i T ) |
21 |
|
ssfi |
|- ( ( ( Prime i^i T ) e. Fin /\ ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ ( Prime i^i T ) ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) e. Fin ) |
22 |
19 20 21
|
sylancl |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) e. Fin ) |
23 |
|
elinel2 |
|- ( n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) -> n e. ( Prime i^i T ) ) |
24 |
|
simpr |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> n e. ( Prime i^i T ) ) |
25 |
10 24
|
sselid |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> n e. NN ) |
26 |
25
|
nnrpd |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> n e. RR+ ) |
27 |
|
relogcl |
|- ( n e. RR+ -> ( log ` n ) e. RR ) |
28 |
26 27
|
syl |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> ( log ` n ) e. RR ) |
29 |
28 25
|
nndivred |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> ( ( log ` n ) / n ) e. RR ) |
30 |
23 29
|
sylan2 |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> ( ( log ` n ) / n ) e. RR ) |
31 |
22 30
|
fsumrecl |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) e. RR ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ x e. RR+ ) -> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) e. RR ) |
33 |
|
rpssre |
|- RR+ C_ RR |
34 |
17
|
recnd |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( phi ` N ) e. CC ) |
35 |
|
o1const |
|- ( ( RR+ C_ RR /\ ( phi ` N ) e. CC ) -> ( x e. RR+ |-> ( phi ` N ) ) e. O(1) ) |
36 |
33 34 35
|
sylancr |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( x e. RR+ |-> ( phi ` N ) ) e. O(1) ) |
37 |
33
|
a1i |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> RR+ C_ RR ) |
38 |
|
1red |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> 1 e. RR ) |
39 |
19 29
|
fsumrecl |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> sum_ n e. ( Prime i^i T ) ( ( log ` n ) / n ) e. RR ) |
40 |
|
log1 |
|- ( log ` 1 ) = 0 |
41 |
25
|
nnge1d |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> 1 <_ n ) |
42 |
|
1rp |
|- 1 e. RR+ |
43 |
|
logleb |
|- ( ( 1 e. RR+ /\ n e. RR+ ) -> ( 1 <_ n <-> ( log ` 1 ) <_ ( log ` n ) ) ) |
44 |
42 26 43
|
sylancr |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> ( 1 <_ n <-> ( log ` 1 ) <_ ( log ` n ) ) ) |
45 |
41 44
|
mpbid |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> ( log ` 1 ) <_ ( log ` n ) ) |
46 |
40 45
|
eqbrtrrid |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> 0 <_ ( log ` n ) ) |
47 |
28 26 46
|
divge0d |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( Prime i^i T ) ) -> 0 <_ ( ( log ` n ) / n ) ) |
48 |
20
|
a1i |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) C_ ( Prime i^i T ) ) |
49 |
19 29 47 48
|
fsumless |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) <_ sum_ n e. ( Prime i^i T ) ( ( log ` n ) / n ) ) |
50 |
49
|
adantr |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ ( x e. RR+ /\ 1 <_ x ) ) -> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) <_ sum_ n e. ( Prime i^i T ) ( ( log ` n ) / n ) ) |
51 |
37 32 38 39 50
|
ello1d |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( x e. RR+ |-> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) e. <_O(1) ) |
52 |
|
0red |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> 0 e. RR ) |
53 |
23 47
|
sylan2 |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ) -> 0 <_ ( ( log ` n ) / n ) ) |
54 |
22 30 53
|
fsumge0 |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> 0 <_ sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) |
55 |
54
|
adantr |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ x e. RR+ ) -> 0 <_ sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) |
56 |
32 52 55
|
o1lo12 |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( ( x e. RR+ |-> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) e. O(1) <-> ( x e. RR+ |-> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) e. <_O(1) ) ) |
57 |
51 56
|
mpbird |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( x e. RR+ |-> sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) e. O(1) ) |
58 |
18 32 36 57
|
o1mul2 |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( x e. RR+ |-> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) ) e. O(1) ) |
59 |
17 31
|
remulcld |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) e. RR ) |
60 |
59
|
recnd |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) e. CC ) |
61 |
60
|
adantr |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ x e. RR+ ) -> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) e. CC ) |
62 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
63 |
62
|
adantl |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
64 |
63
|
recnd |
|- ( ( ( ph /\ ( Prime i^i T ) e. Fin ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
65 |
1 2 3 4 5 6
|
rplogsum |
|- ( ph -> ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) - ( log ` x ) ) ) e. O(1) ) |
66 |
65
|
adantr |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( x e. RR+ |-> ( ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) - ( log ` x ) ) ) e. O(1) ) |
67 |
61 64 66
|
o1dif |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( ( x e. RR+ |-> ( ( phi ` N ) x. sum_ n e. ( ( 1 ... ( |_ ` x ) ) i^i ( Prime i^i T ) ) ( ( log ` n ) / n ) ) ) e. O(1) <-> ( x e. RR+ |-> ( log ` x ) ) e. O(1) ) ) |
68 |
58 67
|
mpbid |
|- ( ( ph /\ ( Prime i^i T ) e. Fin ) -> ( x e. RR+ |-> ( log ` x ) ) e. O(1) ) |
69 |
68
|
ex |
|- ( ph -> ( ( Prime i^i T ) e. Fin -> ( x e. RR+ |-> ( log ` x ) ) e. O(1) ) ) |
70 |
14 69
|
mtoi |
|- ( ph -> -. ( Prime i^i T ) e. Fin ) |
71 |
|
nnenom |
|- NN ~~ _om |
72 |
|
sdomentr |
|- ( ( ( Prime i^i T ) ~< NN /\ NN ~~ _om ) -> ( Prime i^i T ) ~< _om ) |
73 |
71 72
|
mpan2 |
|- ( ( Prime i^i T ) ~< NN -> ( Prime i^i T ) ~< _om ) |
74 |
|
isfinite2 |
|- ( ( Prime i^i T ) ~< _om -> ( Prime i^i T ) e. Fin ) |
75 |
73 74
|
syl |
|- ( ( Prime i^i T ) ~< NN -> ( Prime i^i T ) e. Fin ) |
76 |
70 75
|
nsyl |
|- ( ph -> -. ( Prime i^i T ) ~< NN ) |
77 |
|
bren2 |
|- ( ( Prime i^i T ) ~~ NN <-> ( ( Prime i^i T ) ~<_ NN /\ -. ( Prime i^i T ) ~< NN ) ) |
78 |
13 76 77
|
sylanbrc |
|- ( ph -> ( Prime i^i T ) ~~ NN ) |