Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
2 |
1
|
ad2antrr |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> N e. RR ) |
3 |
|
1red |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> 1 e. RR ) |
4 |
3
|
rehalfcld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( 1 / 2 ) e. RR ) |
5 |
2 4
|
readdcld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( N + ( 1 / 2 ) ) e. RR ) |
6 |
|
simplr |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> S e. RR ) |
7 |
5 6
|
remulcld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( N + ( 1 / 2 ) ) x. S ) e. RR ) |
8 |
7
|
resincld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( ( N + ( 1 / 2 ) ) x. S ) ) e. RR ) |
9 |
|
2re |
|- 2 e. RR |
10 |
9
|
a1i |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> 2 e. RR ) |
11 |
|
pire |
|- _pi e. RR |
12 |
11
|
a1i |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> _pi e. RR ) |
13 |
10 12
|
remulcld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( 2 x. _pi ) e. RR ) |
14 |
6
|
rehalfcld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( S / 2 ) e. RR ) |
15 |
14
|
resincld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( S / 2 ) ) e. RR ) |
16 |
13 15
|
remulcld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) e. RR ) |
17 |
|
2cnd |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> 2 e. CC ) |
18 |
|
picn |
|- _pi e. CC |
19 |
18
|
a1i |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> _pi e. CC ) |
20 |
17 19
|
mulcld |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( 2 x. _pi ) e. CC ) |
21 |
|
recn |
|- ( S e. RR -> S e. CC ) |
22 |
21
|
adantr |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> S e. CC ) |
23 |
22
|
halfcld |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( S / 2 ) e. CC ) |
24 |
23
|
sincld |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( S / 2 ) ) e. CC ) |
25 |
|
2ne0 |
|- 2 =/= 0 |
26 |
25
|
a1i |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> 2 =/= 0 ) |
27 |
|
0re |
|- 0 e. RR |
28 |
|
pipos |
|- 0 < _pi |
29 |
27 28
|
gtneii |
|- _pi =/= 0 |
30 |
29
|
a1i |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> _pi =/= 0 ) |
31 |
17 19 26 30
|
mulne0d |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( 2 x. _pi ) =/= 0 ) |
32 |
22 17 19 26 30
|
divdiv1d |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( S / 2 ) / _pi ) = ( S / ( 2 x. _pi ) ) ) |
33 |
|
simpr |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( S mod ( 2 x. _pi ) ) = 0 ) |
34 |
|
2rp |
|- 2 e. RR+ |
35 |
|
pirp |
|- _pi e. RR+ |
36 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
37 |
34 35 36
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
38 |
|
mod0 |
|- ( ( S e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) ) |
39 |
37 38
|
mpan2 |
|- ( S e. RR -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) ) |
40 |
39
|
adantr |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) ) |
41 |
33 40
|
mtbid |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( S / ( 2 x. _pi ) ) e. ZZ ) |
42 |
32 41
|
eqneltrd |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( ( S / 2 ) / _pi ) e. ZZ ) |
43 |
|
sineq0 |
|- ( ( S / 2 ) e. CC -> ( ( sin ` ( S / 2 ) ) = 0 <-> ( ( S / 2 ) / _pi ) e. ZZ ) ) |
44 |
23 43
|
syl |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( sin ` ( S / 2 ) ) = 0 <-> ( ( S / 2 ) / _pi ) e. ZZ ) ) |
45 |
42 44
|
mtbird |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( sin ` ( S / 2 ) ) = 0 ) |
46 |
45
|
neqned |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( S / 2 ) ) =/= 0 ) |
47 |
20 24 31 46
|
mulne0d |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) =/= 0 ) |
48 |
47
|
adantll |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) =/= 0 ) |
49 |
8 16 48
|
redivcld |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. S ) ) / ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) ) e. RR ) |