Step |
Hyp |
Ref |
Expression |
1 |
|
2cnd |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> 2 e. CC ) |
2 |
|
picn |
|- _pi e. CC |
3 |
2
|
a1i |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> _pi e. CC ) |
4 |
1 3
|
mulcld |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( 2 x. _pi ) e. CC ) |
5 |
|
recn |
|- ( S e. RR -> S e. CC ) |
6 |
5
|
adantr |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> S e. CC ) |
7 |
6
|
halfcld |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( S / 2 ) e. CC ) |
8 |
7
|
sincld |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( S / 2 ) ) e. CC ) |
9 |
|
2ne0 |
|- 2 =/= 0 |
10 |
9
|
a1i |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> 2 =/= 0 ) |
11 |
|
0re |
|- 0 e. RR |
12 |
|
pipos |
|- 0 < _pi |
13 |
11 12
|
gtneii |
|- _pi =/= 0 |
14 |
13
|
a1i |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> _pi =/= 0 ) |
15 |
1 3 10 14
|
mulne0d |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( 2 x. _pi ) =/= 0 ) |
16 |
6 1 3 10 14
|
divdiv1d |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( S / 2 ) / _pi ) = ( S / ( 2 x. _pi ) ) ) |
17 |
|
simpr |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( S mod ( 2 x. _pi ) ) = 0 ) |
18 |
|
2rp |
|- 2 e. RR+ |
19 |
|
pirp |
|- _pi e. RR+ |
20 |
|
rpmulcl |
|- ( ( 2 e. RR+ /\ _pi e. RR+ ) -> ( 2 x. _pi ) e. RR+ ) |
21 |
18 19 20
|
mp2an |
|- ( 2 x. _pi ) e. RR+ |
22 |
|
mod0 |
|- ( ( S e. RR /\ ( 2 x. _pi ) e. RR+ ) -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) ) |
23 |
21 22
|
mpan2 |
|- ( S e. RR -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) ) |
24 |
23
|
adantr |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( S mod ( 2 x. _pi ) ) = 0 <-> ( S / ( 2 x. _pi ) ) e. ZZ ) ) |
25 |
17 24
|
mtbid |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( S / ( 2 x. _pi ) ) e. ZZ ) |
26 |
16 25
|
eqneltrd |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( ( S / 2 ) / _pi ) e. ZZ ) |
27 |
|
sineq0 |
|- ( ( S / 2 ) e. CC -> ( ( sin ` ( S / 2 ) ) = 0 <-> ( ( S / 2 ) / _pi ) e. ZZ ) ) |
28 |
7 27
|
syl |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( sin ` ( S / 2 ) ) = 0 <-> ( ( S / 2 ) / _pi ) e. ZZ ) ) |
29 |
26 28
|
mtbird |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> -. ( sin ` ( S / 2 ) ) = 0 ) |
30 |
29
|
neqned |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( sin ` ( S / 2 ) ) =/= 0 ) |
31 |
4 8 15 30
|
mulne0d |
|- ( ( S e. RR /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) =/= 0 ) |