Step |
Hyp |
Ref |
Expression |
1 |
|
dirkerval2.1 |
|- D = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
2 |
1
|
dirkerval |
|- ( N e. NN -> ( D ` N ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
3 |
|
oveq1 |
|- ( s = t -> ( s mod ( 2 x. _pi ) ) = ( t mod ( 2 x. _pi ) ) ) |
4 |
3
|
eqeq1d |
|- ( s = t -> ( ( s mod ( 2 x. _pi ) ) = 0 <-> ( t mod ( 2 x. _pi ) ) = 0 ) ) |
5 |
|
oveq2 |
|- ( s = t -> ( ( N + ( 1 / 2 ) ) x. s ) = ( ( N + ( 1 / 2 ) ) x. t ) ) |
6 |
5
|
fveq2d |
|- ( s = t -> ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) = ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) ) |
7 |
|
fvoveq1 |
|- ( s = t -> ( sin ` ( s / 2 ) ) = ( sin ` ( t / 2 ) ) ) |
8 |
7
|
oveq2d |
|- ( s = t -> ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) ) |
9 |
6 8
|
oveq12d |
|- ( s = t -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) / ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) ) ) |
10 |
4 9
|
ifbieq2d |
|- ( s = t -> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) = if ( ( t mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) / ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) ) ) ) |
11 |
10
|
cbvmptv |
|- ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( t e. RR |-> if ( ( t mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) / ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) ) ) ) |
12 |
2 11
|
eqtrdi |
|- ( N e. NN -> ( D ` N ) = ( t e. RR |-> if ( ( t mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) / ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) ) ) ) ) |
13 |
12
|
adantr |
|- ( ( N e. NN /\ S e. RR ) -> ( D ` N ) = ( t e. RR |-> if ( ( t mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) / ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) ) ) ) ) |
14 |
|
simpr |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> t = S ) |
15 |
14
|
oveq1d |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> ( t mod ( 2 x. _pi ) ) = ( S mod ( 2 x. _pi ) ) ) |
16 |
15
|
eqeq1d |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> ( ( t mod ( 2 x. _pi ) ) = 0 <-> ( S mod ( 2 x. _pi ) ) = 0 ) ) |
17 |
14
|
oveq2d |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> ( ( N + ( 1 / 2 ) ) x. t ) = ( ( N + ( 1 / 2 ) ) x. S ) ) |
18 |
17
|
fveq2d |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) = ( sin ` ( ( N + ( 1 / 2 ) ) x. S ) ) ) |
19 |
14
|
fvoveq1d |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> ( sin ` ( t / 2 ) ) = ( sin ` ( S / 2 ) ) ) |
20 |
19
|
oveq2d |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) ) |
21 |
18 20
|
oveq12d |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) / ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) ) = ( ( sin ` ( ( N + ( 1 / 2 ) ) x. S ) ) / ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) ) ) |
22 |
16 21
|
ifbieq2d |
|- ( ( ( N e. NN /\ S e. RR ) /\ t = S ) -> if ( ( t mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. t ) ) / ( ( 2 x. _pi ) x. ( sin ` ( t / 2 ) ) ) ) ) = if ( ( S mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. S ) ) / ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) ) ) ) |
23 |
|
simpr |
|- ( ( N e. NN /\ S e. RR ) -> S e. RR ) |
24 |
|
2re |
|- 2 e. RR |
25 |
24
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
26 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
27 |
25 26
|
remulcld |
|- ( N e. NN -> ( 2 x. N ) e. RR ) |
28 |
|
1red |
|- ( N e. NN -> 1 e. RR ) |
29 |
27 28
|
readdcld |
|- ( N e. NN -> ( ( 2 x. N ) + 1 ) e. RR ) |
30 |
|
pire |
|- _pi e. RR |
31 |
30
|
a1i |
|- ( N e. NN -> _pi e. RR ) |
32 |
25 31
|
remulcld |
|- ( N e. NN -> ( 2 x. _pi ) e. RR ) |
33 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
34 |
31
|
recnd |
|- ( N e. NN -> _pi e. CC ) |
35 |
|
2pos |
|- 0 < 2 |
36 |
35
|
a1i |
|- ( N e. NN -> 0 < 2 ) |
37 |
36
|
gt0ne0d |
|- ( N e. NN -> 2 =/= 0 ) |
38 |
|
pipos |
|- 0 < _pi |
39 |
38
|
a1i |
|- ( N e. NN -> 0 < _pi ) |
40 |
39
|
gt0ne0d |
|- ( N e. NN -> _pi =/= 0 ) |
41 |
33 34 37 40
|
mulne0d |
|- ( N e. NN -> ( 2 x. _pi ) =/= 0 ) |
42 |
29 32 41
|
redivcld |
|- ( N e. NN -> ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) e. RR ) |
43 |
42
|
ad2antrr |
|- ( ( ( N e. NN /\ S e. RR ) /\ ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) e. RR ) |
44 |
|
dirker2re |
|- ( ( ( N e. NN /\ S e. RR ) /\ -. ( S mod ( 2 x. _pi ) ) = 0 ) -> ( ( sin ` ( ( N + ( 1 / 2 ) ) x. S ) ) / ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) ) e. RR ) |
45 |
43 44
|
ifclda |
|- ( ( N e. NN /\ S e. RR ) -> if ( ( S mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. S ) ) / ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) ) ) e. RR ) |
46 |
13 22 23 45
|
fvmptd |
|- ( ( N e. NN /\ S e. RR ) -> ( ( D ` N ) ` S ) = if ( ( S mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. N ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( N + ( 1 / 2 ) ) x. S ) ) / ( ( 2 x. _pi ) x. ( sin ` ( S / 2 ) ) ) ) ) ) |