Step |
Hyp |
Ref |
Expression |
1 |
|
snex |
|- { x } e. _V |
2 |
|
distop |
|- ( { x } e. _V -> ~P { x } e. Top ) |
3 |
1 2
|
ax-mp |
|- ~P { x } e. Top |
4 |
|
tgtop |
|- ( ~P { x } e. Top -> ( topGen ` ~P { x } ) = ~P { x } ) |
5 |
3 4
|
ax-mp |
|- ( topGen ` ~P { x } ) = ~P { x } |
6 |
|
topbas |
|- ( ~P { x } e. Top -> ~P { x } e. TopBases ) |
7 |
3 6
|
ax-mp |
|- ~P { x } e. TopBases |
8 |
|
snfi |
|- { x } e. Fin |
9 |
|
pwfi |
|- ( { x } e. Fin <-> ~P { x } e. Fin ) |
10 |
8 9
|
mpbi |
|- ~P { x } e. Fin |
11 |
|
isfinite |
|- ( ~P { x } e. Fin <-> ~P { x } ~< _om ) |
12 |
10 11
|
mpbi |
|- ~P { x } ~< _om |
13 |
|
sdomdom |
|- ( ~P { x } ~< _om -> ~P { x } ~<_ _om ) |
14 |
12 13
|
ax-mp |
|- ~P { x } ~<_ _om |
15 |
|
2ndci |
|- ( ( ~P { x } e. TopBases /\ ~P { x } ~<_ _om ) -> ( topGen ` ~P { x } ) e. 2ndc ) |
16 |
7 14 15
|
mp2an |
|- ( topGen ` ~P { x } ) e. 2ndc |
17 |
5 16
|
eqeltrri |
|- ~P { x } e. 2ndc |
18 |
|
2ndc1stc |
|- ( ~P { x } e. 2ndc -> ~P { x } e. 1stc ) |
19 |
17 18
|
ax-mp |
|- ~P { x } e. 1stc |
20 |
19
|
rgenw |
|- A. x e. X ~P { x } e. 1stc |
21 |
|
dislly |
|- ( X e. V -> ( ~P X e. Locally 1stc <-> A. x e. X ~P { x } e. 1stc ) ) |
22 |
20 21
|
mpbiri |
|- ( X e. V -> ~P X e. Locally 1stc ) |
23 |
|
lly1stc |
|- Locally 1stc = 1stc |
24 |
22 23
|
eleqtrdi |
|- ( X e. V -> ~P X e. 1stc ) |