Metamath Proof Explorer


Theorem disamis

Description: "Disamis", one of the syllogisms of Aristotelian logic. Some ph is ps , and all ph is ch , therefore some ch is ps . In Aristotelian notation, IAI-3: MiP and MaS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses disamis.maj
|- E. x ( ph /\ ps )
disamis.min
|- A. x ( ph -> ch )
Assertion disamis
|- E. x ( ch /\ ps )

Proof

Step Hyp Ref Expression
1 disamis.maj
 |-  E. x ( ph /\ ps )
2 disamis.min
 |-  A. x ( ph -> ch )
3 2 1 datisi
 |-  E. x ( ps /\ ch )
4 exancom
 |-  ( E. x ( ps /\ ch ) <-> E. x ( ch /\ ps ) )
5 3 4 mpbi
 |-  E. x ( ch /\ ps )