Step |
Hyp |
Ref |
Expression |
1 |
|
difss |
|- ( A \ x ) C_ A |
2 |
|
elpw2g |
|- ( A e. V -> ( ( A \ x ) e. ~P A <-> ( A \ x ) C_ A ) ) |
3 |
1 2
|
mpbiri |
|- ( A e. V -> ( A \ x ) e. ~P A ) |
4 |
|
distop |
|- ( A e. V -> ~P A e. Top ) |
5 |
|
unipw |
|- U. ~P A = A |
6 |
5
|
eqcomi |
|- A = U. ~P A |
7 |
6
|
iscld |
|- ( ~P A e. Top -> ( x e. ( Clsd ` ~P A ) <-> ( x C_ A /\ ( A \ x ) e. ~P A ) ) ) |
8 |
4 7
|
syl |
|- ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> ( x C_ A /\ ( A \ x ) e. ~P A ) ) ) |
9 |
3 8
|
mpbiran2d |
|- ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> x C_ A ) ) |
10 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
11 |
9 10
|
bitr4di |
|- ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> x e. ~P A ) ) |
12 |
11
|
eqrdv |
|- ( A e. V -> ( Clsd ` ~P A ) = ~P A ) |