| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difss |  |-  ( A \ x ) C_ A | 
						
							| 2 |  | elpw2g |  |-  ( A e. V -> ( ( A \ x ) e. ~P A <-> ( A \ x ) C_ A ) ) | 
						
							| 3 | 1 2 | mpbiri |  |-  ( A e. V -> ( A \ x ) e. ~P A ) | 
						
							| 4 |  | distop |  |-  ( A e. V -> ~P A e. Top ) | 
						
							| 5 |  | unipw |  |-  U. ~P A = A | 
						
							| 6 | 5 | eqcomi |  |-  A = U. ~P A | 
						
							| 7 | 6 | iscld |  |-  ( ~P A e. Top -> ( x e. ( Clsd ` ~P A ) <-> ( x C_ A /\ ( A \ x ) e. ~P A ) ) ) | 
						
							| 8 | 4 7 | syl |  |-  ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> ( x C_ A /\ ( A \ x ) e. ~P A ) ) ) | 
						
							| 9 | 3 8 | mpbiran2d |  |-  ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> x C_ A ) ) | 
						
							| 10 |  | velpw |  |-  ( x e. ~P A <-> x C_ A ) | 
						
							| 11 | 9 10 | bitr4di |  |-  ( A e. V -> ( x e. ( Clsd ` ~P A ) <-> x e. ~P A ) ) | 
						
							| 12 | 11 | eqrdv |  |-  ( A e. V -> ( Clsd ` ~P A ) = ~P A ) |