| Step | Hyp | Ref | Expression | 
						
							| 1 |  | discr.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | discr.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | discr.3 |  |-  ( ph -> C e. RR ) | 
						
							| 4 |  | discr.4 |  |-  ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) | 
						
							| 5 |  | discr1.5 |  |-  X = if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) | 
						
							| 6 |  | oveq1 |  |-  ( x = X -> ( x ^ 2 ) = ( X ^ 2 ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( x = X -> ( A x. ( x ^ 2 ) ) = ( A x. ( X ^ 2 ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( x = X -> ( B x. x ) = ( B x. X ) ) | 
						
							| 9 | 7 8 | oveq12d |  |-  ( x = X -> ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( x = X -> ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) | 
						
							| 11 | 10 | breq2d |  |-  ( x = X -> ( 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) <-> 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) ) | 
						
							| 12 | 4 | ralrimiva |  |-  ( ph -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ph /\ A < 0 ) -> A. x e. RR 0 <_ ( ( ( A x. ( x ^ 2 ) ) + ( B x. x ) ) + C ) ) | 
						
							| 14 | 2 | adantr |  |-  ( ( ph /\ A < 0 ) -> B e. RR ) | 
						
							| 15 | 3 | adantr |  |-  ( ( ph /\ A < 0 ) -> C e. RR ) | 
						
							| 16 |  | 0re |  |-  0 e. RR | 
						
							| 17 |  | ifcl |  |-  ( ( C e. RR /\ 0 e. RR ) -> if ( 0 <_ C , C , 0 ) e. RR ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( ( ph /\ A < 0 ) -> if ( 0 <_ C , C , 0 ) e. RR ) | 
						
							| 19 | 14 18 | readdcld |  |-  ( ( ph /\ A < 0 ) -> ( B + if ( 0 <_ C , C , 0 ) ) e. RR ) | 
						
							| 20 |  | peano2re |  |-  ( ( B + if ( 0 <_ C , C , 0 ) ) e. RR -> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) e. RR ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ph /\ A < 0 ) -> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) e. RR ) | 
						
							| 22 | 1 | adantr |  |-  ( ( ph /\ A < 0 ) -> A e. RR ) | 
						
							| 23 | 22 | renegcld |  |-  ( ( ph /\ A < 0 ) -> -u A e. RR ) | 
						
							| 24 | 1 | lt0neg1d |  |-  ( ph -> ( A < 0 <-> 0 < -u A ) ) | 
						
							| 25 | 24 | biimpa |  |-  ( ( ph /\ A < 0 ) -> 0 < -u A ) | 
						
							| 26 | 25 | gt0ne0d |  |-  ( ( ph /\ A < 0 ) -> -u A =/= 0 ) | 
						
							| 27 | 21 23 26 | redivcld |  |-  ( ( ph /\ A < 0 ) -> ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) e. RR ) | 
						
							| 28 |  | 1re |  |-  1 e. RR | 
						
							| 29 |  | ifcl |  |-  ( ( ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) e. RR /\ 1 e. RR ) -> if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) e. RR ) | 
						
							| 30 | 27 28 29 | sylancl |  |-  ( ( ph /\ A < 0 ) -> if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) e. RR ) | 
						
							| 31 | 5 30 | eqeltrid |  |-  ( ( ph /\ A < 0 ) -> X e. RR ) | 
						
							| 32 | 11 13 31 | rspcdva |  |-  ( ( ph /\ A < 0 ) -> 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) | 
						
							| 33 |  | resqcl |  |-  ( X e. RR -> ( X ^ 2 ) e. RR ) | 
						
							| 34 | 31 33 | syl |  |-  ( ( ph /\ A < 0 ) -> ( X ^ 2 ) e. RR ) | 
						
							| 35 | 22 34 | remulcld |  |-  ( ( ph /\ A < 0 ) -> ( A x. ( X ^ 2 ) ) e. RR ) | 
						
							| 36 | 14 31 | remulcld |  |-  ( ( ph /\ A < 0 ) -> ( B x. X ) e. RR ) | 
						
							| 37 | 35 36 | readdcld |  |-  ( ( ph /\ A < 0 ) -> ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) e. RR ) | 
						
							| 38 | 37 15 | readdcld |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) e. RR ) | 
						
							| 39 | 22 31 | remulcld |  |-  ( ( ph /\ A < 0 ) -> ( A x. X ) e. RR ) | 
						
							| 40 | 39 19 | readdcld |  |-  ( ( ph /\ A < 0 ) -> ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) e. RR ) | 
						
							| 41 | 40 31 | remulcld |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) e. RR ) | 
						
							| 42 | 16 | a1i |  |-  ( ( ph /\ A < 0 ) -> 0 e. RR ) | 
						
							| 43 | 18 31 | remulcld |  |-  ( ( ph /\ A < 0 ) -> ( if ( 0 <_ C , C , 0 ) x. X ) e. RR ) | 
						
							| 44 |  | max2 |  |-  ( ( 0 e. RR /\ C e. RR ) -> C <_ if ( 0 <_ C , C , 0 ) ) | 
						
							| 45 | 16 15 44 | sylancr |  |-  ( ( ph /\ A < 0 ) -> C <_ if ( 0 <_ C , C , 0 ) ) | 
						
							| 46 |  | max1 |  |-  ( ( 0 e. RR /\ C e. RR ) -> 0 <_ if ( 0 <_ C , C , 0 ) ) | 
						
							| 47 | 16 15 46 | sylancr |  |-  ( ( ph /\ A < 0 ) -> 0 <_ if ( 0 <_ C , C , 0 ) ) | 
						
							| 48 |  | max1 |  |-  ( ( 1 e. RR /\ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) e. RR ) -> 1 <_ if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) ) | 
						
							| 49 | 28 27 48 | sylancr |  |-  ( ( ph /\ A < 0 ) -> 1 <_ if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) ) | 
						
							| 50 | 49 5 | breqtrrdi |  |-  ( ( ph /\ A < 0 ) -> 1 <_ X ) | 
						
							| 51 | 18 31 47 50 | lemulge11d |  |-  ( ( ph /\ A < 0 ) -> if ( 0 <_ C , C , 0 ) <_ ( if ( 0 <_ C , C , 0 ) x. X ) ) | 
						
							| 52 | 15 18 43 45 51 | letrd |  |-  ( ( ph /\ A < 0 ) -> C <_ ( if ( 0 <_ C , C , 0 ) x. X ) ) | 
						
							| 53 | 15 43 37 52 | leadd2dd |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) ) | 
						
							| 54 | 39 14 | readdcld |  |-  ( ( ph /\ A < 0 ) -> ( ( A x. X ) + B ) e. RR ) | 
						
							| 55 | 54 | recnd |  |-  ( ( ph /\ A < 0 ) -> ( ( A x. X ) + B ) e. CC ) | 
						
							| 56 | 18 | recnd |  |-  ( ( ph /\ A < 0 ) -> if ( 0 <_ C , C , 0 ) e. CC ) | 
						
							| 57 | 31 | recnd |  |-  ( ( ph /\ A < 0 ) -> X e. CC ) | 
						
							| 58 | 55 56 57 | adddird |  |-  ( ( ph /\ A < 0 ) -> ( ( ( ( A x. X ) + B ) + if ( 0 <_ C , C , 0 ) ) x. X ) = ( ( ( ( A x. X ) + B ) x. X ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) ) | 
						
							| 59 | 39 | recnd |  |-  ( ( ph /\ A < 0 ) -> ( A x. X ) e. CC ) | 
						
							| 60 | 14 | recnd |  |-  ( ( ph /\ A < 0 ) -> B e. CC ) | 
						
							| 61 | 59 60 56 | addassd |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + B ) + if ( 0 <_ C , C , 0 ) ) = ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) ) | 
						
							| 62 | 61 | oveq1d |  |-  ( ( ph /\ A < 0 ) -> ( ( ( ( A x. X ) + B ) + if ( 0 <_ C , C , 0 ) ) x. X ) = ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) ) | 
						
							| 63 | 22 | recnd |  |-  ( ( ph /\ A < 0 ) -> A e. CC ) | 
						
							| 64 | 63 57 57 | mulassd |  |-  ( ( ph /\ A < 0 ) -> ( ( A x. X ) x. X ) = ( A x. ( X x. X ) ) ) | 
						
							| 65 |  | sqval |  |-  ( X e. CC -> ( X ^ 2 ) = ( X x. X ) ) | 
						
							| 66 | 57 65 | syl |  |-  ( ( ph /\ A < 0 ) -> ( X ^ 2 ) = ( X x. X ) ) | 
						
							| 67 | 66 | oveq2d |  |-  ( ( ph /\ A < 0 ) -> ( A x. ( X ^ 2 ) ) = ( A x. ( X x. X ) ) ) | 
						
							| 68 | 64 67 | eqtr4d |  |-  ( ( ph /\ A < 0 ) -> ( ( A x. X ) x. X ) = ( A x. ( X ^ 2 ) ) ) | 
						
							| 69 | 68 | oveq1d |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) x. X ) + ( B x. X ) ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) ) | 
						
							| 70 | 59 57 60 69 | joinlmuladdmuld |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + B ) x. X ) = ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( ( ph /\ A < 0 ) -> ( ( ( ( A x. X ) + B ) x. X ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) ) | 
						
							| 72 | 58 62 71 | 3eqtr3d |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) = ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + ( if ( 0 <_ C , C , 0 ) x. X ) ) ) | 
						
							| 73 | 53 72 | breqtrrd |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) <_ ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) ) | 
						
							| 74 | 23 31 | remulcld |  |-  ( ( ph /\ A < 0 ) -> ( -u A x. X ) e. RR ) | 
						
							| 75 | 19 | ltp1d |  |-  ( ( ph /\ A < 0 ) -> ( B + if ( 0 <_ C , C , 0 ) ) < ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) ) | 
						
							| 76 |  | max2 |  |-  ( ( 1 e. RR /\ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) e. RR ) -> ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) ) | 
						
							| 77 | 28 27 76 | sylancr |  |-  ( ( ph /\ A < 0 ) -> ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ if ( 1 <_ ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) , 1 ) ) | 
						
							| 78 | 77 5 | breqtrrdi |  |-  ( ( ph /\ A < 0 ) -> ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ X ) | 
						
							| 79 |  | ledivmul |  |-  ( ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) e. RR /\ X e. RR /\ ( -u A e. RR /\ 0 < -u A ) ) -> ( ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ X <-> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) <_ ( -u A x. X ) ) ) | 
						
							| 80 | 21 31 23 25 79 | syl112anc |  |-  ( ( ph /\ A < 0 ) -> ( ( ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) / -u A ) <_ X <-> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) <_ ( -u A x. X ) ) ) | 
						
							| 81 | 78 80 | mpbid |  |-  ( ( ph /\ A < 0 ) -> ( ( B + if ( 0 <_ C , C , 0 ) ) + 1 ) <_ ( -u A x. X ) ) | 
						
							| 82 | 19 21 74 75 81 | ltletrd |  |-  ( ( ph /\ A < 0 ) -> ( B + if ( 0 <_ C , C , 0 ) ) < ( -u A x. X ) ) | 
						
							| 83 | 63 57 | mulneg1d |  |-  ( ( ph /\ A < 0 ) -> ( -u A x. X ) = -u ( A x. X ) ) | 
						
							| 84 |  | df-neg |  |-  -u ( A x. X ) = ( 0 - ( A x. X ) ) | 
						
							| 85 | 83 84 | eqtrdi |  |-  ( ( ph /\ A < 0 ) -> ( -u A x. X ) = ( 0 - ( A x. X ) ) ) | 
						
							| 86 | 82 85 | breqtrd |  |-  ( ( ph /\ A < 0 ) -> ( B + if ( 0 <_ C , C , 0 ) ) < ( 0 - ( A x. X ) ) ) | 
						
							| 87 | 39 19 42 | ltaddsub2d |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) < 0 <-> ( B + if ( 0 <_ C , C , 0 ) ) < ( 0 - ( A x. X ) ) ) ) | 
						
							| 88 | 86 87 | mpbird |  |-  ( ( ph /\ A < 0 ) -> ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) < 0 ) | 
						
							| 89 | 28 | a1i |  |-  ( ( ph /\ A < 0 ) -> 1 e. RR ) | 
						
							| 90 |  | 0lt1 |  |-  0 < 1 | 
						
							| 91 | 90 | a1i |  |-  ( ( ph /\ A < 0 ) -> 0 < 1 ) | 
						
							| 92 | 42 89 31 91 50 | ltletrd |  |-  ( ( ph /\ A < 0 ) -> 0 < X ) | 
						
							| 93 |  | ltmul1 |  |-  ( ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) e. RR /\ 0 e. RR /\ ( X e. RR /\ 0 < X ) ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) < 0 <-> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) < ( 0 x. X ) ) ) | 
						
							| 94 | 40 42 31 92 93 | syl112anc |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) < 0 <-> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) < ( 0 x. X ) ) ) | 
						
							| 95 | 88 94 | mpbid |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) < ( 0 x. X ) ) | 
						
							| 96 | 57 | mul02d |  |-  ( ( ph /\ A < 0 ) -> ( 0 x. X ) = 0 ) | 
						
							| 97 | 95 96 | breqtrd |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. X ) + ( B + if ( 0 <_ C , C , 0 ) ) ) x. X ) < 0 ) | 
						
							| 98 | 38 41 42 73 97 | lelttrd |  |-  ( ( ph /\ A < 0 ) -> ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) < 0 ) | 
						
							| 99 |  | ltnle |  |-  ( ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) e. RR /\ 0 e. RR ) -> ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) < 0 <-> -. 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) ) | 
						
							| 100 | 38 16 99 | sylancl |  |-  ( ( ph /\ A < 0 ) -> ( ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) < 0 <-> -. 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) ) | 
						
							| 101 | 98 100 | mpbid |  |-  ( ( ph /\ A < 0 ) -> -. 0 <_ ( ( ( A x. ( X ^ 2 ) ) + ( B x. X ) ) + C ) ) | 
						
							| 102 | 32 101 | pm2.65da |  |-  ( ph -> -. A < 0 ) | 
						
							| 103 |  | lelttric |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A \/ A < 0 ) ) | 
						
							| 104 | 16 1 103 | sylancr |  |-  ( ph -> ( 0 <_ A \/ A < 0 ) ) | 
						
							| 105 | 104 | ord |  |-  ( ph -> ( -. 0 <_ A -> A < 0 ) ) | 
						
							| 106 | 102 105 | mt3d |  |-  ( ph -> 0 <_ A ) |