Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | disj1 | |- ( ( A i^i B ) = (/) <-> A. x ( x e. A -> -. x e. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj | |- ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B ) |
|
2 | df-ral | |- ( A. x e. A -. x e. B <-> A. x ( x e. A -> -. x e. B ) ) |
|
3 | 1 2 | bitri | |- ( ( A i^i B ) = (/) <-> A. x ( x e. A -> -. x e. B ) ) |