Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 21-Mar-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | disj4 | |- ( ( A i^i B ) = (/) <-> -. ( A \ B ) C. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 | |- ( ( A i^i B ) = (/) <-> A = ( A \ B ) ) |
|
2 | eqcom | |- ( A = ( A \ B ) <-> ( A \ B ) = A ) |
|
3 | difss | |- ( A \ B ) C_ A |
|
4 | dfpss2 | |- ( ( A \ B ) C. A <-> ( ( A \ B ) C_ A /\ -. ( A \ B ) = A ) ) |
|
5 | 3 4 | mpbiran | |- ( ( A \ B ) C. A <-> -. ( A \ B ) = A ) |
6 | 5 | con2bii | |- ( ( A \ B ) = A <-> -. ( A \ B ) C. A ) |
7 | 1 2 6 | 3bitri | |- ( ( A i^i B ) = (/) <-> -. ( A \ B ) C. A ) |