Metamath Proof Explorer


Theorem disjOLD

Description: Obsolete version of disj as of 28-Jun-2024. (Contributed by NM, 17-Feb-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion disjOLD
|- ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B )

Proof

Step Hyp Ref Expression
1 df-in
 |-  ( A i^i B ) = { x | ( x e. A /\ x e. B ) }
2 1 eqeq1i
 |-  ( ( A i^i B ) = (/) <-> { x | ( x e. A /\ x e. B ) } = (/) )
3 abeq1
 |-  ( { x | ( x e. A /\ x e. B ) } = (/) <-> A. x ( ( x e. A /\ x e. B ) <-> x e. (/) ) )
4 imnan
 |-  ( ( x e. A -> -. x e. B ) <-> -. ( x e. A /\ x e. B ) )
5 noel
 |-  -. x e. (/)
6 5 nbn
 |-  ( -. ( x e. A /\ x e. B ) <-> ( ( x e. A /\ x e. B ) <-> x e. (/) ) )
7 4 6 bitr2i
 |-  ( ( ( x e. A /\ x e. B ) <-> x e. (/) ) <-> ( x e. A -> -. x e. B ) )
8 7 albii
 |-  ( A. x ( ( x e. A /\ x e. B ) <-> x e. (/) ) <-> A. x ( x e. A -> -. x e. B ) )
9 2 3 8 3bitri
 |-  ( ( A i^i B ) = (/) <-> A. x ( x e. A -> -. x e. B ) )
10 df-ral
 |-  ( A. x e. A -. x e. B <-> A. x ( x e. A -> -. x e. B ) )
11 9 10 bitr4i
 |-  ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B )