Step |
Hyp |
Ref |
Expression |
1 |
|
disjxsn |
|- Disj_ x e. { (/) } x |
2 |
|
simpr |
|- ( ( B e. W /\ B = (/) ) -> B = (/) ) |
3 |
|
eqidd |
|- ( ( B e. W /\ B = (/) ) -> (/) = (/) ) |
4 |
|
id |
|- ( B e. W -> B e. W ) |
5 |
|
0ex |
|- (/) e. _V |
6 |
5
|
a1i |
|- ( B e. W -> (/) e. _V ) |
7 |
4 6
|
preqsnd |
|- ( B e. W -> ( { B , (/) } = { (/) } <-> ( B = (/) /\ (/) = (/) ) ) ) |
8 |
7
|
adantr |
|- ( ( B e. W /\ B = (/) ) -> ( { B , (/) } = { (/) } <-> ( B = (/) /\ (/) = (/) ) ) ) |
9 |
2 3 8
|
mpbir2and |
|- ( ( B e. W /\ B = (/) ) -> { B , (/) } = { (/) } ) |
10 |
9
|
disjeq1d |
|- ( ( B e. W /\ B = (/) ) -> ( Disj_ x e. { B , (/) } x <-> Disj_ x e. { (/) } x ) ) |
11 |
1 10
|
mpbiri |
|- ( ( B e. W /\ B = (/) ) -> Disj_ x e. { B , (/) } x ) |
12 |
|
in0 |
|- ( B i^i (/) ) = (/) |
13 |
|
elex |
|- ( B e. W -> B e. _V ) |
14 |
13
|
adantr |
|- ( ( B e. W /\ B =/= (/) ) -> B e. _V ) |
15 |
5
|
a1i |
|- ( ( B e. W /\ B =/= (/) ) -> (/) e. _V ) |
16 |
|
simpr |
|- ( ( B e. W /\ B =/= (/) ) -> B =/= (/) ) |
17 |
|
id |
|- ( x = B -> x = B ) |
18 |
|
id |
|- ( x = (/) -> x = (/) ) |
19 |
17 18
|
disjprg |
|- ( ( B e. _V /\ (/) e. _V /\ B =/= (/) ) -> ( Disj_ x e. { B , (/) } x <-> ( B i^i (/) ) = (/) ) ) |
20 |
14 15 16 19
|
syl3anc |
|- ( ( B e. W /\ B =/= (/) ) -> ( Disj_ x e. { B , (/) } x <-> ( B i^i (/) ) = (/) ) ) |
21 |
12 20
|
mpbiri |
|- ( ( B e. W /\ B =/= (/) ) -> Disj_ x e. { B , (/) } x ) |
22 |
11 21
|
pm2.61dane |
|- ( B e. W -> Disj_ x e. { B , (/) } x ) |
23 |
22
|
ad2antlr |
|- ( ( ( A e. V /\ B e. W ) /\ A = (/) ) -> Disj_ x e. { B , (/) } x ) |
24 |
|
difeq2 |
|- ( A = (/) -> ( B \ A ) = ( B \ (/) ) ) |
25 |
|
dif0 |
|- ( B \ (/) ) = B |
26 |
24 25
|
eqtrdi |
|- ( A = (/) -> ( B \ A ) = B ) |
27 |
|
id |
|- ( A = (/) -> A = (/) ) |
28 |
26 27
|
preq12d |
|- ( A = (/) -> { ( B \ A ) , A } = { B , (/) } ) |
29 |
28
|
disjeq1d |
|- ( A = (/) -> ( Disj_ x e. { ( B \ A ) , A } x <-> Disj_ x e. { B , (/) } x ) ) |
30 |
29
|
adantl |
|- ( ( ( A e. V /\ B e. W ) /\ A = (/) ) -> ( Disj_ x e. { ( B \ A ) , A } x <-> Disj_ x e. { B , (/) } x ) ) |
31 |
23 30
|
mpbird |
|- ( ( ( A e. V /\ B e. W ) /\ A = (/) ) -> Disj_ x e. { ( B \ A ) , A } x ) |
32 |
|
disjdifr |
|- ( ( B \ A ) i^i A ) = (/) |
33 |
|
difexg |
|- ( B e. W -> ( B \ A ) e. _V ) |
34 |
33
|
ad2antlr |
|- ( ( ( A e. V /\ B e. W ) /\ -. A = (/) ) -> ( B \ A ) e. _V ) |
35 |
|
elex |
|- ( A e. V -> A e. _V ) |
36 |
35
|
ad2antrr |
|- ( ( ( A e. V /\ B e. W ) /\ -. A = (/) ) -> A e. _V ) |
37 |
|
ssid |
|- ( B \ A ) C_ ( B \ A ) |
38 |
|
ssdifeq0 |
|- ( A C_ ( B \ A ) <-> A = (/) ) |
39 |
38
|
notbii |
|- ( -. A C_ ( B \ A ) <-> -. A = (/) ) |
40 |
|
nssne2 |
|- ( ( ( B \ A ) C_ ( B \ A ) /\ -. A C_ ( B \ A ) ) -> ( B \ A ) =/= A ) |
41 |
39 40
|
sylan2br |
|- ( ( ( B \ A ) C_ ( B \ A ) /\ -. A = (/) ) -> ( B \ A ) =/= A ) |
42 |
37 41
|
mpan |
|- ( -. A = (/) -> ( B \ A ) =/= A ) |
43 |
42
|
adantl |
|- ( ( ( A e. V /\ B e. W ) /\ -. A = (/) ) -> ( B \ A ) =/= A ) |
44 |
|
id |
|- ( x = ( B \ A ) -> x = ( B \ A ) ) |
45 |
|
id |
|- ( x = A -> x = A ) |
46 |
44 45
|
disjprg |
|- ( ( ( B \ A ) e. _V /\ A e. _V /\ ( B \ A ) =/= A ) -> ( Disj_ x e. { ( B \ A ) , A } x <-> ( ( B \ A ) i^i A ) = (/) ) ) |
47 |
34 36 43 46
|
syl3anc |
|- ( ( ( A e. V /\ B e. W ) /\ -. A = (/) ) -> ( Disj_ x e. { ( B \ A ) , A } x <-> ( ( B \ A ) i^i A ) = (/) ) ) |
48 |
32 47
|
mpbiri |
|- ( ( ( A e. V /\ B e. W ) /\ -. A = (/) ) -> Disj_ x e. { ( B \ A ) , A } x ) |
49 |
31 48
|
pm2.61dan |
|- ( ( A e. V /\ B e. W ) -> Disj_ x e. { ( B \ A ) , A } x ) |