| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							inex1g | 
							 |-  ( A e. V -> ( A i^i B ) e. _V )  | 
						
						
							| 2 | 
							
								
							 | 
							elex | 
							 |-  ( A e. V -> A e. _V )  | 
						
						
							| 3 | 
							
								
							 | 
							disjdifprg | 
							 |-  ( ( ( A i^i B ) e. _V /\ A e. _V ) -> Disj_ x e. { ( A \ ( A i^i B ) ) , ( A i^i B ) } x ) | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							syl2anc | 
							 |-  ( A e. V -> Disj_ x e. { ( A \ ( A i^i B ) ) , ( A i^i B ) } x ) | 
						
						
							| 5 | 
							
								
							 | 
							difin | 
							 |-  ( A \ ( A i^i B ) ) = ( A \ B )  | 
						
						
							| 6 | 
							
								5
							 | 
							preq1i | 
							 |-  { ( A \ ( A i^i B ) ) , ( A i^i B ) } = { ( A \ B ) , ( A i^i B ) } | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							 |-  ( A e. V -> { ( A \ ( A i^i B ) ) , ( A i^i B ) } = { ( A \ B ) , ( A i^i B ) } ) | 
						
						
							| 8 | 
							
								7
							 | 
							disjeq1d | 
							 |-  ( A e. V -> ( Disj_ x e. { ( A \ ( A i^i B ) ) , ( A i^i B ) } x <-> Disj_ x e. { ( A \ B ) , ( A i^i B ) } x ) ) | 
						
						
							| 9 | 
							
								4 8
							 | 
							mpbid | 
							 |-  ( A e. V -> Disj_ x e. { ( A \ B ) , ( A i^i B ) } x ) |