Metamath Proof Explorer


Theorem disjdmqs

Description: If a relation is disjoint, its domain quotient is equal to the domain quotient of the cosets by it. Lemma for partim2 and petlem via disjdmqseq . (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjdmqs
|- ( Disj R -> ( dom R /. R ) = ( dom ,~ R /. ,~ R ) )

Proof

Step Hyp Ref Expression
1 disjdmqsss
 |-  ( Disj R -> ( dom R /. R ) C_ ( dom ,~ R /. ,~ R ) )
2 disjdmqscossss
 |-  ( Disj R -> ( dom ,~ R /. ,~ R ) C_ ( dom R /. R ) )
3 1 2 eqssd
 |-  ( Disj R -> ( dom R /. R ) = ( dom ,~ R /. ,~ R ) )