Description: Lemma for the equality theorem for partition parteq1 . (Contributed by Peter Mazsa, 5-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjdmqseqeq1 | |- ( R = S -> ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( Disj S /\ ( dom S /. S ) = A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjeq | |- ( R = S -> ( Disj R <-> Disj S ) ) |
|
| 2 | dmqseqeq1 | |- ( R = S -> ( ( dom R /. R ) = A <-> ( dom S /. S ) = A ) ) |
|
| 3 | 1 2 | anbi12d | |- ( R = S -> ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( Disj S /\ ( dom S /. S ) = A ) ) ) |