Step |
Hyp |
Ref |
Expression |
1 |
|
ecxrn |
|- ( A e. V -> [ A ] ( R |X. S ) = { <. y , z >. | ( A R y /\ A S z ) } ) |
2 |
|
ecxrn |
|- ( B e. W -> [ B ] ( R |X. S ) = { <. y , z >. | ( B R y /\ B S z ) } ) |
3 |
1 2
|
ineqan12d |
|- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = ( { <. y , z >. | ( A R y /\ A S z ) } i^i { <. y , z >. | ( B R y /\ B S z ) } ) ) |
4 |
|
inopab |
|- ( { <. y , z >. | ( A R y /\ A S z ) } i^i { <. y , z >. | ( B R y /\ B S z ) } ) = { <. y , z >. | ( ( A R y /\ A S z ) /\ ( B R y /\ B S z ) ) } |
5 |
3 4
|
eqtrdi |
|- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = { <. y , z >. | ( ( A R y /\ A S z ) /\ ( B R y /\ B S z ) ) } ) |
6 |
|
an4 |
|- ( ( ( A R y /\ A S z ) /\ ( B R y /\ B S z ) ) <-> ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) ) |
7 |
6
|
opabbii |
|- { <. y , z >. | ( ( A R y /\ A S z ) /\ ( B R y /\ B S z ) ) } = { <. y , z >. | ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) } |
8 |
5 7
|
eqtrdi |
|- ( ( A e. V /\ B e. W ) -> ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = { <. y , z >. | ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) } ) |
9 |
8
|
neeq1d |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> { <. y , z >. | ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) } =/= (/) ) ) |
10 |
|
opabn0 |
|- ( { <. y , z >. | ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) } =/= (/) <-> E. y E. z ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) ) |
11 |
9 10
|
bitrdi |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> E. y E. z ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) ) ) |
12 |
|
exdistrv |
|- ( E. y E. z ( ( A R y /\ B R y ) /\ ( A S z /\ B S z ) ) <-> ( E. y ( A R y /\ B R y ) /\ E. z ( A S z /\ B S z ) ) ) |
13 |
11 12
|
bitrdi |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> ( E. y ( A R y /\ B R y ) /\ E. z ( A S z /\ B S z ) ) ) ) |
14 |
|
ecinn0 |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] R i^i [ B ] R ) =/= (/) <-> E. y ( A R y /\ B R y ) ) ) |
15 |
|
ecinn0 |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] S i^i [ B ] S ) =/= (/) <-> E. z ( A S z /\ B S z ) ) ) |
16 |
14 15
|
anbi12d |
|- ( ( A e. V /\ B e. W ) -> ( ( ( [ A ] R i^i [ B ] R ) =/= (/) /\ ( [ A ] S i^i [ B ] S ) =/= (/) ) <-> ( E. y ( A R y /\ B R y ) /\ E. z ( A S z /\ B S z ) ) ) ) |
17 |
13 16
|
bitr4d |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> ( ( [ A ] R i^i [ B ] R ) =/= (/) /\ ( [ A ] S i^i [ B ] S ) =/= (/) ) ) ) |
18 |
|
neanior |
|- ( ( ( [ A ] R i^i [ B ] R ) =/= (/) /\ ( [ A ] S i^i [ B ] S ) =/= (/) ) <-> -. ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] S i^i [ B ] S ) = (/) ) ) |
19 |
17 18
|
bitrdi |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) =/= (/) <-> -. ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] S i^i [ B ] S ) = (/) ) ) ) |
20 |
19
|
necon4abid |
|- ( ( A e. V /\ B e. W ) -> ( ( [ A ] ( R |X. S ) i^i [ B ] ( R |X. S ) ) = (/) <-> ( ( [ A ] R i^i [ B ] R ) = (/) \/ ( [ A ] S i^i [ B ] S ) = (/) ) ) ) |