Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjel | |- ( ( ( A i^i B ) = (/) /\ C e. A ) -> -. C e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj3 | |- ( ( A i^i B ) = (/) <-> A = ( A \ B ) ) |
|
| 2 | eleq2 | |- ( A = ( A \ B ) -> ( C e. A <-> C e. ( A \ B ) ) ) |
|
| 3 | eldifn | |- ( C e. ( A \ B ) -> -. C e. B ) |
|
| 4 | 2 3 | biimtrdi | |- ( A = ( A \ B ) -> ( C e. A -> -. C e. B ) ) |
| 5 | 1 4 | sylbi | |- ( ( A i^i B ) = (/) -> ( C e. A -> -. C e. B ) ) |
| 6 | 5 | imp | |- ( ( ( A i^i B ) = (/) /\ C e. A ) -> -. C e. B ) |