Description: A set can't belong to both members of disjoint classes. (Contributed by NM, 28-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | disjel | |- ( ( ( A i^i B ) = (/) /\ C e. A ) -> -. C e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj3 | |- ( ( A i^i B ) = (/) <-> A = ( A \ B ) ) |
|
2 | eleq2 | |- ( A = ( A \ B ) -> ( C e. A <-> C e. ( A \ B ) ) ) |
|
3 | eldifn | |- ( C e. ( A \ B ) -> -. C e. B ) |
|
4 | 2 3 | syl6bi | |- ( A = ( A \ B ) -> ( C e. A -> -. C e. B ) ) |
5 | 1 4 | sylbi | |- ( ( A i^i B ) = (/) -> ( C e. A -> -. C e. B ) ) |
6 | 5 | imp | |- ( ( ( A i^i B ) = (/) /\ C e. A ) -> -. C e. B ) |