Step |
Hyp |
Ref |
Expression |
1 |
|
1st2nd2 |
|- ( x e. ( B X. { ~P U. ran A } ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
2 |
1
|
ad2antll |
|- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
3 |
|
simprl |
|- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> x e. A ) |
4 |
2 3
|
eqeltrrd |
|- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. A ) |
5 |
|
fvex |
|- ( 1st ` x ) e. _V |
6 |
|
fvex |
|- ( 2nd ` x ) e. _V |
7 |
5 6
|
opelrn |
|- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. A -> ( 2nd ` x ) e. ran A ) |
8 |
4 7
|
syl |
|- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> ( 2nd ` x ) e. ran A ) |
9 |
|
pwuninel |
|- -. ~P U. ran A e. ran A |
10 |
|
xp2nd |
|- ( x e. ( B X. { ~P U. ran A } ) -> ( 2nd ` x ) e. { ~P U. ran A } ) |
11 |
10
|
ad2antll |
|- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> ( 2nd ` x ) e. { ~P U. ran A } ) |
12 |
|
elsni |
|- ( ( 2nd ` x ) e. { ~P U. ran A } -> ( 2nd ` x ) = ~P U. ran A ) |
13 |
11 12
|
syl |
|- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> ( 2nd ` x ) = ~P U. ran A ) |
14 |
13
|
eleq1d |
|- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> ( ( 2nd ` x ) e. ran A <-> ~P U. ran A e. ran A ) ) |
15 |
9 14
|
mtbiri |
|- ( ( ( A e. V /\ B e. W ) /\ ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) -> -. ( 2nd ` x ) e. ran A ) |
16 |
8 15
|
pm2.65da |
|- ( ( A e. V /\ B e. W ) -> -. ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) |
17 |
|
elin |
|- ( x e. ( A i^i ( B X. { ~P U. ran A } ) ) <-> ( x e. A /\ x e. ( B X. { ~P U. ran A } ) ) ) |
18 |
16 17
|
sylnibr |
|- ( ( A e. V /\ B e. W ) -> -. x e. ( A i^i ( B X. { ~P U. ran A } ) ) ) |
19 |
18
|
eq0rdv |
|- ( ( A e. V /\ B e. W ) -> ( A i^i ( B X. { ~P U. ran A } ) ) = (/) ) |
20 |
|
simpr |
|- ( ( A e. V /\ B e. W ) -> B e. W ) |
21 |
|
rnexg |
|- ( A e. V -> ran A e. _V ) |
22 |
21
|
adantr |
|- ( ( A e. V /\ B e. W ) -> ran A e. _V ) |
23 |
|
uniexg |
|- ( ran A e. _V -> U. ran A e. _V ) |
24 |
|
pwexg |
|- ( U. ran A e. _V -> ~P U. ran A e. _V ) |
25 |
22 23 24
|
3syl |
|- ( ( A e. V /\ B e. W ) -> ~P U. ran A e. _V ) |
26 |
|
xpsneng |
|- ( ( B e. W /\ ~P U. ran A e. _V ) -> ( B X. { ~P U. ran A } ) ~~ B ) |
27 |
20 25 26
|
syl2anc |
|- ( ( A e. V /\ B e. W ) -> ( B X. { ~P U. ran A } ) ~~ B ) |
28 |
19 27
|
jca |
|- ( ( A e. V /\ B e. W ) -> ( ( A i^i ( B X. { ~P U. ran A } ) ) = (/) /\ ( B X. { ~P U. ran A } ) ~~ B ) ) |