| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. V /\ B e. W ) -> B e. W ) |
| 2 |
|
snex |
|- { ~P U. ran A } e. _V |
| 3 |
|
xpexg |
|- ( ( B e. W /\ { ~P U. ran A } e. _V ) -> ( B X. { ~P U. ran A } ) e. _V ) |
| 4 |
1 2 3
|
sylancl |
|- ( ( A e. V /\ B e. W ) -> ( B X. { ~P U. ran A } ) e. _V ) |
| 5 |
|
disjen |
|- ( ( A e. V /\ B e. W ) -> ( ( A i^i ( B X. { ~P U. ran A } ) ) = (/) /\ ( B X. { ~P U. ran A } ) ~~ B ) ) |
| 6 |
|
ineq2 |
|- ( x = ( B X. { ~P U. ran A } ) -> ( A i^i x ) = ( A i^i ( B X. { ~P U. ran A } ) ) ) |
| 7 |
6
|
eqeq1d |
|- ( x = ( B X. { ~P U. ran A } ) -> ( ( A i^i x ) = (/) <-> ( A i^i ( B X. { ~P U. ran A } ) ) = (/) ) ) |
| 8 |
|
breq1 |
|- ( x = ( B X. { ~P U. ran A } ) -> ( x ~~ B <-> ( B X. { ~P U. ran A } ) ~~ B ) ) |
| 9 |
7 8
|
anbi12d |
|- ( x = ( B X. { ~P U. ran A } ) -> ( ( ( A i^i x ) = (/) /\ x ~~ B ) <-> ( ( A i^i ( B X. { ~P U. ran A } ) ) = (/) /\ ( B X. { ~P U. ran A } ) ~~ B ) ) ) |
| 10 |
4 5 9
|
spcedv |
|- ( ( A e. V /\ B e. W ) -> E. x ( ( A i^i x ) = (/) /\ x ~~ B ) ) |