Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjeq1 | |- ( A = B -> ( Disj_ x e. A C <-> Disj_ x e. B C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqimss2 | |- ( A = B -> B C_ A ) | |
| 2 | disjss1 | |- ( B C_ A -> ( Disj_ x e. A C -> Disj_ x e. B C ) ) | |
| 3 | 1 2 | syl | |- ( A = B -> ( Disj_ x e. A C -> Disj_ x e. B C ) ) | 
| 4 | eqimss | |- ( A = B -> A C_ B ) | |
| 5 | disjss1 | |- ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) | |
| 6 | 4 5 | syl | |- ( A = B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) | 
| 7 | 3 6 | impbid | |- ( A = B -> ( Disj_ x e. A C <-> Disj_ x e. B C ) ) |