Metamath Proof Explorer


Theorem disjeq12d

Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypotheses disjeq1d.1
|- ( ph -> A = B )
disjeq12d.1
|- ( ph -> C = D )
Assertion disjeq12d
|- ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B D ) )

Proof

Step Hyp Ref Expression
1 disjeq1d.1
 |-  ( ph -> A = B )
2 disjeq12d.1
 |-  ( ph -> C = D )
3 1 disjeq1d
 |-  ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B C ) )
4 2 adantr
 |-  ( ( ph /\ x e. B ) -> C = D )
5 4 disjeq2dv
 |-  ( ph -> ( Disj_ x e. B C <-> Disj_ x e. B D ) )
6 3 5 bitrd
 |-  ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B D ) )