Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | disjeq1d.1 | |- ( ph -> A = B ) |
|
disjeq12d.1 | |- ( ph -> C = D ) |
||
Assertion | disjeq12d | |- ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B D ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq1d.1 | |- ( ph -> A = B ) |
|
2 | disjeq12d.1 | |- ( ph -> C = D ) |
|
3 | 1 | disjeq1d | |- ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B C ) ) |
4 | 2 | adantr | |- ( ( ph /\ x e. B ) -> C = D ) |
5 | 4 | disjeq2dv | |- ( ph -> ( Disj_ x e. B C <-> Disj_ x e. B D ) ) |
6 | 3 5 | bitrd | |- ( ph -> ( Disj_ x e. A C <-> Disj_ x e. B D ) ) |