Description: Equality theorem for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | disjss1f.1 | |- F/_ x A |
|
disjss1f.2 | |- F/_ x B |
||
Assertion | disjeq1f | |- ( A = B -> ( Disj_ x e. A C <-> Disj_ x e. B C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjss1f.1 | |- F/_ x A |
|
2 | disjss1f.2 | |- F/_ x B |
|
3 | eqimss2 | |- ( A = B -> B C_ A ) |
|
4 | 2 1 | disjss1f | |- ( B C_ A -> ( Disj_ x e. A C -> Disj_ x e. B C ) ) |
5 | 3 4 | syl | |- ( A = B -> ( Disj_ x e. A C -> Disj_ x e. B C ) ) |
6 | eqimss | |- ( A = B -> A C_ B ) |
|
7 | 1 2 | disjss1f | |- ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) |
8 | 6 7 | syl | |- ( A = B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) |
9 | 5 8 | impbid | |- ( A = B -> ( Disj_ x e. A C <-> Disj_ x e. B C ) ) |