Metamath Proof Explorer


Theorem disjeq2dv

Description: Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)

Ref Expression
Hypothesis disjeq2dv.1
|- ( ( ph /\ x e. A ) -> B = C )
Assertion disjeq2dv
|- ( ph -> ( Disj_ x e. A B <-> Disj_ x e. A C ) )

Proof

Step Hyp Ref Expression
1 disjeq2dv.1
 |-  ( ( ph /\ x e. A ) -> B = C )
2 1 ralrimiva
 |-  ( ph -> A. x e. A B = C )
3 disjeq2
 |-  ( A. x e. A B = C -> ( Disj_ x e. A B <-> Disj_ x e. A C ) )
4 2 3 syl
 |-  ( ph -> ( Disj_ x e. A B <-> Disj_ x e. A C ) )