Description: Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | disjeq2dv.1 | |- ( ( ph /\ x e. A ) -> B = C ) | |
| Assertion | disjeq2dv | |- ( ph -> ( Disj_ x e. A B <-> Disj_ x e. A C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | disjeq2dv.1 | |- ( ( ph /\ x e. A ) -> B = C ) | |
| 2 | 1 | ralrimiva | |- ( ph -> A. x e. A B = C ) | 
| 3 | disjeq2 | |- ( A. x e. A B = C -> ( Disj_ x e. A B <-> Disj_ x e. A C ) ) | |
| 4 | 2 3 | syl | |- ( ph -> ( Disj_ x e. A B <-> Disj_ x e. A C ) ) |