Description: Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | disjeq2dv.1 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
Assertion | disjeq2dv | |- ( ph -> ( Disj_ x e. A B <-> Disj_ x e. A C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjeq2dv.1 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
2 | 1 | ralrimiva | |- ( ph -> A. x e. A B = C ) |
3 | disjeq2 | |- ( A. x e. A B = C -> ( Disj_ x e. A B <-> Disj_ x e. A C ) ) |
|
4 | 2 3 | syl | |- ( ph -> ( Disj_ x e. A B <-> Disj_ x e. A C ) ) |