Step |
Hyp |
Ref |
Expression |
1 |
|
disji.1 |
|- ( x = X -> B = C ) |
2 |
|
disji.2 |
|- ( x = Y -> B = D ) |
3 |
|
inelcm |
|- ( ( Z e. C /\ Z e. D ) -> ( C i^i D ) =/= (/) ) |
4 |
1 2
|
disji2 |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ X =/= Y ) -> ( C i^i D ) = (/) ) |
5 |
4
|
3expia |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( X =/= Y -> ( C i^i D ) = (/) ) ) |
6 |
5
|
necon1d |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( ( C i^i D ) =/= (/) -> X = Y ) ) |
7 |
6
|
3impia |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ ( C i^i D ) =/= (/) ) -> X = Y ) |
8 |
3 7
|
syl3an3 |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ ( Z e. C /\ Z e. D ) ) -> X = Y ) |