| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disji.1 |  |-  ( x = X -> B = C ) | 
						
							| 2 |  | disji.2 |  |-  ( x = Y -> B = D ) | 
						
							| 3 |  | inelcm |  |-  ( ( Z e. C /\ Z e. D ) -> ( C i^i D ) =/= (/) ) | 
						
							| 4 | 1 2 | disji2 |  |-  ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ X =/= Y ) -> ( C i^i D ) = (/) ) | 
						
							| 5 | 4 | 3expia |  |-  ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( X =/= Y -> ( C i^i D ) = (/) ) ) | 
						
							| 6 | 5 | necon1d |  |-  ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( ( C i^i D ) =/= (/) -> X = Y ) ) | 
						
							| 7 | 6 | 3impia |  |-  ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ ( C i^i D ) =/= (/) ) -> X = Y ) | 
						
							| 8 | 3 7 | syl3an3 |  |-  ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ ( Z e. C /\ Z e. D ) ) -> X = Y ) |