Step |
Hyp |
Ref |
Expression |
1 |
|
disji.1 |
|- ( x = X -> B = C ) |
2 |
|
disji.2 |
|- ( x = Y -> B = D ) |
3 |
|
df-ne |
|- ( X =/= Y <-> -. X = Y ) |
4 |
|
disjors |
|- ( Disj_ x e. A B <-> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) ) |
5 |
|
eqeq1 |
|- ( y = X -> ( y = z <-> X = z ) ) |
6 |
|
nfcv |
|- F/_ x X |
7 |
|
nfcv |
|- F/_ x C |
8 |
6 7 1
|
csbhypf |
|- ( y = X -> [_ y / x ]_ B = C ) |
9 |
8
|
ineq1d |
|- ( y = X -> ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = ( C i^i [_ z / x ]_ B ) ) |
10 |
9
|
eqeq1d |
|- ( y = X -> ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) <-> ( C i^i [_ z / x ]_ B ) = (/) ) ) |
11 |
5 10
|
orbi12d |
|- ( y = X -> ( ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) <-> ( X = z \/ ( C i^i [_ z / x ]_ B ) = (/) ) ) ) |
12 |
|
eqeq2 |
|- ( z = Y -> ( X = z <-> X = Y ) ) |
13 |
|
nfcv |
|- F/_ x Y |
14 |
|
nfcv |
|- F/_ x D |
15 |
13 14 2
|
csbhypf |
|- ( z = Y -> [_ z / x ]_ B = D ) |
16 |
15
|
ineq2d |
|- ( z = Y -> ( C i^i [_ z / x ]_ B ) = ( C i^i D ) ) |
17 |
16
|
eqeq1d |
|- ( z = Y -> ( ( C i^i [_ z / x ]_ B ) = (/) <-> ( C i^i D ) = (/) ) ) |
18 |
12 17
|
orbi12d |
|- ( z = Y -> ( ( X = z \/ ( C i^i [_ z / x ]_ B ) = (/) ) <-> ( X = Y \/ ( C i^i D ) = (/) ) ) ) |
19 |
11 18
|
rspc2v |
|- ( ( X e. A /\ Y e. A ) -> ( A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> ( X = Y \/ ( C i^i D ) = (/) ) ) ) |
20 |
4 19
|
syl5bi |
|- ( ( X e. A /\ Y e. A ) -> ( Disj_ x e. A B -> ( X = Y \/ ( C i^i D ) = (/) ) ) ) |
21 |
20
|
impcom |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( X = Y \/ ( C i^i D ) = (/) ) ) |
22 |
21
|
ord |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( -. X = Y -> ( C i^i D ) = (/) ) ) |
23 |
3 22
|
syl5bi |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) ) -> ( X =/= Y -> ( C i^i D ) = (/) ) ) |
24 |
23
|
3impia |
|- ( ( Disj_ x e. A B /\ ( X e. A /\ Y e. A ) /\ X =/= Y ) -> ( C i^i D ) = (/) ) |