| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjif.1 | 
							 |-  F/_ x C  | 
						
						
							| 2 | 
							
								
							 | 
							disjif.2 | 
							 |-  ( x = Y -> B = C )  | 
						
						
							| 3 | 
							
								
							 | 
							inelcm | 
							 |-  ( ( Z e. B /\ Z e. C ) -> ( B i^i C ) =/= (/) )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							disji2f | 
							 |-  ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) /\ x =/= Y ) -> ( B i^i C ) = (/) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3expia | 
							 |-  ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) ) -> ( x =/= Y -> ( B i^i C ) = (/) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							necon1d | 
							 |-  ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) ) -> ( ( B i^i C ) =/= (/) -> x = Y ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3impia | 
							 |-  ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) /\ ( B i^i C ) =/= (/) ) -> x = Y )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							syl3an3 | 
							 |-  ( ( Disj_ x e. A B /\ ( x e. A /\ Y e. A ) /\ ( Z e. B /\ Z e. C ) ) -> x = Y )  |