Metamath Proof Explorer


Theorem disjin2

Description: If a collection is disjoint, so is the collection of the intersections with a given set. (Contributed by Thierry Arnoux, 21-Jun-2020)

Ref Expression
Assertion disjin2
|- ( Disj_ x e. B C -> Disj_ x e. B ( A i^i C ) )

Proof

Step Hyp Ref Expression
1 elinel2
 |-  ( y e. ( A i^i C ) -> y e. C )
2 1 rmoimi
 |-  ( E* x e. B y e. C -> E* x e. B y e. ( A i^i C ) )
3 2 alimi
 |-  ( A. y E* x e. B y e. C -> A. y E* x e. B y e. ( A i^i C ) )
4 df-disj
 |-  ( Disj_ x e. B C <-> A. y E* x e. B y e. C )
5 df-disj
 |-  ( Disj_ x e. B ( A i^i C ) <-> A. y E* x e. B y e. ( A i^i C ) )
6 3 4 5 3imtr4i
 |-  ( Disj_ x e. B C -> Disj_ x e. B ( A i^i C ) )