Description: Two ways to say that a collection of index unions C ( i , x ) for i e. A and x e. B is disjoint. (Contributed by AV, 9-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | disjiunb.1 | |- ( i = j -> B = D ) | |
| disjiunb.2 | |- ( i = j -> C = E ) | ||
| Assertion | disjiunb | |- ( Disj_ i e. A U_ x e. B C <-> A. i e. A A. j e. A ( i = j \/ ( U_ x e. B C i^i U_ x e. D E ) = (/) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | disjiunb.1 | |- ( i = j -> B = D ) | |
| 2 | disjiunb.2 | |- ( i = j -> C = E ) | |
| 3 | 1 2 | iuneq12d | |- ( i = j -> U_ x e. B C = U_ x e. D E ) | 
| 4 | 3 | disjor | |- ( Disj_ i e. A U_ x e. B C <-> A. i e. A A. j e. A ( i = j \/ ( U_ x e. B C i^i U_ x e. D E ) = (/) ) ) |