Metamath Proof Explorer


Theorem disjiunb

Description: Two ways to say that a collection of index unions C ( i , x ) for i e. A and x e. B is disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjiunb.1
|- ( i = j -> B = D )
disjiunb.2
|- ( i = j -> C = E )
Assertion disjiunb
|- ( Disj_ i e. A U_ x e. B C <-> A. i e. A A. j e. A ( i = j \/ ( U_ x e. B C i^i U_ x e. D E ) = (/) ) )

Proof

Step Hyp Ref Expression
1 disjiunb.1
 |-  ( i = j -> B = D )
2 disjiunb.2
 |-  ( i = j -> C = E )
3 1 2 iuneq12d
 |-  ( i = j -> U_ x e. B C = U_ x e. D E )
4 3 disjor
 |-  ( Disj_ i e. A U_ x e. B C <-> A. i e. A A. j e. A ( i = j \/ ( U_ x e. B C i^i U_ x e. D E ) = (/) ) )