Step |
Hyp |
Ref |
Expression |
1 |
|
disjlem18 |
|- ( ( A e. V /\ z e. _V ) -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( z e. [ x ] R <-> A ,~ R z ) ) ) ) |
2 |
1
|
elvd |
|- ( A e. V -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> ( z e. [ x ] R <-> A ,~ R z ) ) ) ) |
3 |
2
|
imp31 |
|- ( ( ( A e. V /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( z e. [ x ] R <-> A ,~ R z ) ) |
4 |
|
elecALTV |
|- ( ( A e. V /\ z e. _V ) -> ( z e. [ A ] ,~ R <-> A ,~ R z ) ) |
5 |
4
|
elvd |
|- ( A e. V -> ( z e. [ A ] ,~ R <-> A ,~ R z ) ) |
6 |
5
|
ad2antrr |
|- ( ( ( A e. V /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( z e. [ A ] ,~ R <-> A ,~ R z ) ) |
7 |
3 6
|
bitr4d |
|- ( ( ( A e. V /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> ( z e. [ x ] R <-> z e. [ A ] ,~ R ) ) |
8 |
7
|
eqrdv |
|- ( ( ( A e. V /\ Disj R ) /\ ( x e. dom R /\ A e. [ x ] R ) ) -> [ x ] R = [ A ] ,~ R ) |
9 |
8
|
exp31 |
|- ( A e. V -> ( Disj R -> ( ( x e. dom R /\ A e. [ x ] R ) -> [ x ] R = [ A ] ,~ R ) ) ) |