Metamath Proof Explorer


Theorem disjord

Description: Conditions for a collection of sets A ( a ) for a e. V to be disjoint. (Contributed by AV, 9-Jan-2022)

Ref Expression
Hypotheses disjord.1
|- ( a = b -> A = B )
disjord.2
|- ( ( ph /\ x e. A /\ x e. B ) -> a = b )
Assertion disjord
|- ( ph -> Disj_ a e. V A )

Proof

Step Hyp Ref Expression
1 disjord.1
 |-  ( a = b -> A = B )
2 disjord.2
 |-  ( ( ph /\ x e. A /\ x e. B ) -> a = b )
3 orc
 |-  ( a = b -> ( a = b \/ ( A i^i B ) = (/) ) )
4 3 a1d
 |-  ( a = b -> ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) )
5 2 3expia
 |-  ( ( ph /\ x e. A ) -> ( x e. B -> a = b ) )
6 5 con3d
 |-  ( ( ph /\ x e. A ) -> ( -. a = b -> -. x e. B ) )
7 6 impancom
 |-  ( ( ph /\ -. a = b ) -> ( x e. A -> -. x e. B ) )
8 7 ralrimiv
 |-  ( ( ph /\ -. a = b ) -> A. x e. A -. x e. B )
9 disj
 |-  ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B )
10 8 9 sylibr
 |-  ( ( ph /\ -. a = b ) -> ( A i^i B ) = (/) )
11 10 olcd
 |-  ( ( ph /\ -. a = b ) -> ( a = b \/ ( A i^i B ) = (/) ) )
12 11 expcom
 |-  ( -. a = b -> ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) )
13 4 12 pm2.61i
 |-  ( ph -> ( a = b \/ ( A i^i B ) = (/) ) )
14 13 adantr
 |-  ( ( ph /\ ( a e. V /\ b e. V ) ) -> ( a = b \/ ( A i^i B ) = (/) ) )
15 14 ralrimivva
 |-  ( ph -> A. a e. V A. b e. V ( a = b \/ ( A i^i B ) = (/) ) )
16 1 disjor
 |-  ( Disj_ a e. V A <-> A. a e. V A. b e. V ( a = b \/ ( A i^i B ) = (/) ) )
17 15 16 sylibr
 |-  ( ph -> Disj_ a e. V A )