Step |
Hyp |
Ref |
Expression |
1 |
|
disjord.1 |
|- ( a = b -> A = B ) |
2 |
|
disjord.2 |
|- ( ( ph /\ x e. A /\ x e. B ) -> a = b ) |
3 |
|
orc |
|- ( a = b -> ( a = b \/ ( A i^i B ) = (/) ) ) |
4 |
3
|
a1d |
|- ( a = b -> ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) ) |
5 |
2
|
3expia |
|- ( ( ph /\ x e. A ) -> ( x e. B -> a = b ) ) |
6 |
5
|
con3d |
|- ( ( ph /\ x e. A ) -> ( -. a = b -> -. x e. B ) ) |
7 |
6
|
impancom |
|- ( ( ph /\ -. a = b ) -> ( x e. A -> -. x e. B ) ) |
8 |
7
|
ralrimiv |
|- ( ( ph /\ -. a = b ) -> A. x e. A -. x e. B ) |
9 |
|
disj |
|- ( ( A i^i B ) = (/) <-> A. x e. A -. x e. B ) |
10 |
8 9
|
sylibr |
|- ( ( ph /\ -. a = b ) -> ( A i^i B ) = (/) ) |
11 |
10
|
olcd |
|- ( ( ph /\ -. a = b ) -> ( a = b \/ ( A i^i B ) = (/) ) ) |
12 |
11
|
expcom |
|- ( -. a = b -> ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) ) |
13 |
4 12
|
pm2.61i |
|- ( ph -> ( a = b \/ ( A i^i B ) = (/) ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ ( a e. V /\ b e. V ) ) -> ( a = b \/ ( A i^i B ) = (/) ) ) |
15 |
14
|
ralrimivva |
|- ( ph -> A. a e. V A. b e. V ( a = b \/ ( A i^i B ) = (/) ) ) |
16 |
1
|
disjor |
|- ( Disj_ a e. V A <-> A. a e. V A. b e. V ( a = b \/ ( A i^i B ) = (/) ) ) |
17 |
15 16
|
sylibr |
|- ( ph -> Disj_ a e. V A ) |