Step |
Hyp |
Ref |
Expression |
1 |
|
inpreima |
|- ( Fun F -> ( `' F " ( [_ y / x ]_ B i^i [_ z / x ]_ B ) ) = ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) ) |
2 |
|
imaeq2 |
|- ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) -> ( `' F " ( [_ y / x ]_ B i^i [_ z / x ]_ B ) ) = ( `' F " (/) ) ) |
3 |
|
ima0 |
|- ( `' F " (/) ) = (/) |
4 |
2 3
|
eqtrdi |
|- ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) -> ( `' F " ( [_ y / x ]_ B i^i [_ z / x ]_ B ) ) = (/) ) |
5 |
1 4
|
sylan9req |
|- ( ( Fun F /\ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) = (/) ) |
6 |
5
|
ex |
|- ( Fun F -> ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) -> ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) = (/) ) ) |
7 |
|
csbima12 |
|- [_ y / x ]_ ( `' F " B ) = ( [_ y / x ]_ `' F " [_ y / x ]_ B ) |
8 |
|
csbconstg |
|- ( y e. _V -> [_ y / x ]_ `' F = `' F ) |
9 |
8
|
elv |
|- [_ y / x ]_ `' F = `' F |
10 |
9
|
imaeq1i |
|- ( [_ y / x ]_ `' F " [_ y / x ]_ B ) = ( `' F " [_ y / x ]_ B ) |
11 |
7 10
|
eqtri |
|- [_ y / x ]_ ( `' F " B ) = ( `' F " [_ y / x ]_ B ) |
12 |
|
csbima12 |
|- [_ z / x ]_ ( `' F " B ) = ( [_ z / x ]_ `' F " [_ z / x ]_ B ) |
13 |
|
csbconstg |
|- ( z e. _V -> [_ z / x ]_ `' F = `' F ) |
14 |
13
|
elv |
|- [_ z / x ]_ `' F = `' F |
15 |
14
|
imaeq1i |
|- ( [_ z / x ]_ `' F " [_ z / x ]_ B ) = ( `' F " [_ z / x ]_ B ) |
16 |
12 15
|
eqtri |
|- [_ z / x ]_ ( `' F " B ) = ( `' F " [_ z / x ]_ B ) |
17 |
11 16
|
ineq12i |
|- ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) |
18 |
17
|
eqeq1i |
|- ( ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) <-> ( ( `' F " [_ y / x ]_ B ) i^i ( `' F " [_ z / x ]_ B ) ) = (/) ) |
19 |
6 18
|
syl6ibr |
|- ( Fun F -> ( ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) -> ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) |
20 |
19
|
orim2d |
|- ( Fun F -> ( ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> ( y = z \/ ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) ) |
21 |
20
|
ralimdv |
|- ( Fun F -> ( A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> A. z e. A ( y = z \/ ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) ) |
22 |
21
|
ralimdv |
|- ( Fun F -> ( A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) -> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) ) |
23 |
|
disjors |
|- ( Disj_ x e. A B <-> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ B i^i [_ z / x ]_ B ) = (/) ) ) |
24 |
|
disjors |
|- ( Disj_ x e. A ( `' F " B ) <-> A. y e. A A. z e. A ( y = z \/ ( [_ y / x ]_ ( `' F " B ) i^i [_ z / x ]_ ( `' F " B ) ) = (/) ) ) |
25 |
22 23 24
|
3imtr4g |
|- ( Fun F -> ( Disj_ x e. A B -> Disj_ x e. A ( `' F " B ) ) ) |
26 |
25
|
imp |
|- ( ( Fun F /\ Disj_ x e. A B ) -> Disj_ x e. A ( `' F " B ) ) |