| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							disjprg.1 | 
							 |-  ( x = A -> C = D )  | 
						
						
							| 2 | 
							
								
							 | 
							disjprg.2 | 
							 |-  ( x = B -> C = E )  | 
						
						
							| 3 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( y = A -> ( y = z <-> A = z ) )  | 
						
						
							| 4 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x A  | 
						
						
							| 5 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x D  | 
						
						
							| 6 | 
							
								4 5 1
							 | 
							csbhypf | 
							 |-  ( y = A -> [_ y / x ]_ C = D )  | 
						
						
							| 7 | 
							
								6
							 | 
							ineq1d | 
							 |-  ( y = A -> ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = ( D i^i [_ z / x ]_ C ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq1d | 
							 |-  ( y = A -> ( ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) <-> ( D i^i [_ z / x ]_ C ) = (/) ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							orbi12d | 
							 |-  ( y = A -> ( ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ralbidv | 
							 |-  ( y = A -> ( A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) ) ) | 
						
						
							| 11 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( y = B -> ( y = z <-> B = z ) )  | 
						
						
							| 12 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x B  | 
						
						
							| 13 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ x E  | 
						
						
							| 14 | 
							
								12 13 2
							 | 
							csbhypf | 
							 |-  ( y = B -> [_ y / x ]_ C = E )  | 
						
						
							| 15 | 
							
								14
							 | 
							ineq1d | 
							 |-  ( y = B -> ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = ( E i^i [_ z / x ]_ C ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqeq1d | 
							 |-  ( y = B -> ( ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) <-> ( E i^i [_ z / x ]_ C ) = (/) ) )  | 
						
						
							| 17 | 
							
								11 16
							 | 
							orbi12d | 
							 |-  ( y = B -> ( ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ralbidv | 
							 |-  ( y = B -> ( A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) ) | 
						
						
							| 19 | 
							
								10 18
							 | 
							ralprg | 
							 |-  ( ( A e. V /\ B e. V ) -> ( A. y e. { A , B } A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) /\ A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) ) ) | 
						
						
							| 20 | 
							
								19
							 | 
							3adant3 | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. y e. { A , B } A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) /\ A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) ) ) | 
						
						
							| 21 | 
							
								
							 | 
							id | 
							 |-  ( z = A -> z = A )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqcomd | 
							 |-  ( z = A -> A = z )  | 
						
						
							| 23 | 
							
								22
							 | 
							orcd | 
							 |-  ( z = A -> ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							trud | 
							 |-  ( z = A -> T. )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							2thd | 
							 |-  ( z = A -> ( ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> T. ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( z = B -> ( A = z <-> A = B ) )  | 
						
						
							| 27 | 
							
								12 13 2
							 | 
							csbhypf | 
							 |-  ( z = B -> [_ z / x ]_ C = E )  | 
						
						
							| 28 | 
							
								27
							 | 
							ineq2d | 
							 |-  ( z = B -> ( D i^i [_ z / x ]_ C ) = ( D i^i E ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqeq1d | 
							 |-  ( z = B -> ( ( D i^i [_ z / x ]_ C ) = (/) <-> ( D i^i E ) = (/) ) )  | 
						
						
							| 30 | 
							
								26 29
							 | 
							orbi12d | 
							 |-  ( z = B -> ( ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> ( A = B \/ ( D i^i E ) = (/) ) ) )  | 
						
						
							| 31 | 
							
								25 30
							 | 
							ralprg | 
							 |-  ( ( A e. V /\ B e. V ) -> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> ( T. /\ ( A = B \/ ( D i^i E ) = (/) ) ) ) ) | 
						
						
							| 32 | 
							
								31
							 | 
							3adant3 | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> ( T. /\ ( A = B \/ ( D i^i E ) = (/) ) ) ) ) | 
						
						
							| 33 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> A =/= B )  | 
						
						
							| 34 | 
							
								33
							 | 
							neneqd | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> -. A = B )  | 
						
						
							| 35 | 
							
								
							 | 
							biorf | 
							 |-  ( -. A = B -> ( ( D i^i E ) = (/) <-> ( A = B \/ ( D i^i E ) = (/) ) ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							syl | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( ( D i^i E ) = (/) <-> ( A = B \/ ( D i^i E ) = (/) ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							tru | 
							 |-  T.  | 
						
						
							| 38 | 
							
								37
							 | 
							biantrur | 
							 |-  ( ( A = B \/ ( D i^i E ) = (/) ) <-> ( T. /\ ( A = B \/ ( D i^i E ) = (/) ) ) )  | 
						
						
							| 39 | 
							
								36 38
							 | 
							bitrdi | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( ( D i^i E ) = (/) <-> ( T. /\ ( A = B \/ ( D i^i E ) = (/) ) ) ) )  | 
						
						
							| 40 | 
							
								32 39
							 | 
							bitr4d | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) <-> ( D i^i E ) = (/) ) ) | 
						
						
							| 41 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( z = A -> ( B = z <-> B = A ) )  | 
						
						
							| 42 | 
							
								
							 | 
							eqcom | 
							 |-  ( B = A <-> A = B )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							bitrdi | 
							 |-  ( z = A -> ( B = z <-> A = B ) )  | 
						
						
							| 44 | 
							
								4 5 1
							 | 
							csbhypf | 
							 |-  ( z = A -> [_ z / x ]_ C = D )  | 
						
						
							| 45 | 
							
								44
							 | 
							ineq2d | 
							 |-  ( z = A -> ( E i^i [_ z / x ]_ C ) = ( E i^i D ) )  | 
						
						
							| 46 | 
							
								
							 | 
							incom | 
							 |-  ( E i^i D ) = ( D i^i E )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							eqtrdi | 
							 |-  ( z = A -> ( E i^i [_ z / x ]_ C ) = ( D i^i E ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							eqeq1d | 
							 |-  ( z = A -> ( ( E i^i [_ z / x ]_ C ) = (/) <-> ( D i^i E ) = (/) ) )  | 
						
						
							| 49 | 
							
								43 48
							 | 
							orbi12d | 
							 |-  ( z = A -> ( ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> ( A = B \/ ( D i^i E ) = (/) ) ) )  | 
						
						
							| 50 | 
							
								
							 | 
							id | 
							 |-  ( z = B -> z = B )  | 
						
						
							| 51 | 
							
								50
							 | 
							eqcomd | 
							 |-  ( z = B -> B = z )  | 
						
						
							| 52 | 
							
								51
							 | 
							orcd | 
							 |-  ( z = B -> ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) )  | 
						
						
							| 53 | 
							
								
							 | 
							trud | 
							 |-  ( z = B -> T. )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							2thd | 
							 |-  ( z = B -> ( ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> T. ) )  | 
						
						
							| 55 | 
							
								49 54
							 | 
							ralprg | 
							 |-  ( ( A e. V /\ B e. V ) -> ( A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> ( ( A = B \/ ( D i^i E ) = (/) ) /\ T. ) ) ) | 
						
						
							| 56 | 
							
								55
							 | 
							3adant3 | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> ( ( A = B \/ ( D i^i E ) = (/) ) /\ T. ) ) ) | 
						
						
							| 57 | 
							
								37
							 | 
							biantru | 
							 |-  ( ( A = B \/ ( D i^i E ) = (/) ) <-> ( ( A = B \/ ( D i^i E ) = (/) ) /\ T. ) )  | 
						
						
							| 58 | 
							
								36 57
							 | 
							bitrdi | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( ( D i^i E ) = (/) <-> ( ( A = B \/ ( D i^i E ) = (/) ) /\ T. ) ) )  | 
						
						
							| 59 | 
							
								56 58
							 | 
							bitr4d | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) <-> ( D i^i E ) = (/) ) ) | 
						
						
							| 60 | 
							
								40 59
							 | 
							anbi12d | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( ( A. z e. { A , B } ( A = z \/ ( D i^i [_ z / x ]_ C ) = (/) ) /\ A. z e. { A , B } ( B = z \/ ( E i^i [_ z / x ]_ C ) = (/) ) ) <-> ( ( D i^i E ) = (/) /\ ( D i^i E ) = (/) ) ) ) | 
						
						
							| 61 | 
							
								20 60
							 | 
							bitrd | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( A. y e. { A , B } A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) <-> ( ( D i^i E ) = (/) /\ ( D i^i E ) = (/) ) ) ) | 
						
						
							| 62 | 
							
								
							 | 
							disjors | 
							 |-  ( Disj_ x e. { A , B } C <-> A. y e. { A , B } A. z e. { A , B } ( y = z \/ ( [_ y / x ]_ C i^i [_ z / x ]_ C ) = (/) ) ) | 
						
						
							| 63 | 
							
								
							 | 
							pm4.24 | 
							 |-  ( ( D i^i E ) = (/) <-> ( ( D i^i E ) = (/) /\ ( D i^i E ) = (/) ) )  | 
						
						
							| 64 | 
							
								61 62 63
							 | 
							3bitr4g | 
							 |-  ( ( A e. V /\ B e. V /\ A =/= B ) -> ( Disj_ x e. { A , B } C <-> ( D i^i E ) = (/) ) ) |