Metamath Proof Explorer


Theorem disjprsn

Description: The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021)

Ref Expression
Assertion disjprsn
|- ( ( A =/= C /\ B =/= C ) -> ( { A , B } i^i { C } ) = (/) )

Proof

Step Hyp Ref Expression
1 dfsn2
 |-  { C } = { C , C }
2 1 ineq2i
 |-  ( { A , B } i^i { C } ) = ( { A , B } i^i { C , C } )
3 disjpr2
 |-  ( ( ( A =/= C /\ B =/= C ) /\ ( A =/= C /\ B =/= C ) ) -> ( { A , B } i^i { C , C } ) = (/) )
4 3 anidms
 |-  ( ( A =/= C /\ B =/= C ) -> ( { A , B } i^i { C , C } ) = (/) )
5 2 4 eqtrid
 |-  ( ( A =/= C /\ B =/= C ) -> ( { A , B } i^i { C } ) = (/) )