Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | disjr | |- ( ( A i^i B ) = (/) <-> A. x e. B -. x e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
2 | 1 | eqeq1i | |- ( ( A i^i B ) = (/) <-> ( B i^i A ) = (/) ) |
3 | disj | |- ( ( B i^i A ) = (/) <-> A. x e. B -. x e. A ) |
|
4 | 2 3 | bitri | |- ( ( A i^i B ) = (/) <-> A. x e. B -. x e. A ) |