Metamath Proof Explorer


Theorem disjr

Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Assertion disjr
|- ( ( A i^i B ) = (/) <-> A. x e. B -. x e. A )

Proof

Step Hyp Ref Expression
1 incom
 |-  ( A i^i B ) = ( B i^i A )
2 1 eqeq1i
 |-  ( ( A i^i B ) = (/) <-> ( B i^i A ) = (/) )
3 disj
 |-  ( ( B i^i A ) = (/) <-> A. x e. B -. x e. A )
4 2 3 bitri
 |-  ( ( A i^i B ) = (/) <-> A. x e. B -. x e. A )