Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjr | |- ( ( A i^i B ) = (/) <-> A. x e. B -. x e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | |- ( A i^i B ) = ( B i^i A ) |
|
| 2 | 1 | eqeq1i | |- ( ( A i^i B ) = (/) <-> ( B i^i A ) = (/) ) |
| 3 | disj | |- ( ( B i^i A ) = (/) <-> A. x e. B -. x e. A ) |
|
| 4 | 2 3 | bitri | |- ( ( A i^i B ) = (/) <-> A. x e. B -. x e. A ) |