Metamath Proof Explorer


Theorem disjresdisj

Description: The intersection of restrictions to disjoint is the empty class. (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion disjresdisj
|- ( ( A i^i B ) = (/) -> ( ( R |` A ) i^i ( R |` B ) ) = (/) )

Proof

Step Hyp Ref Expression
1 resindi
 |-  ( R |` ( A i^i B ) ) = ( ( R |` A ) i^i ( R |` B ) )
2 disjresin
 |-  ( ( A i^i B ) = (/) -> ( R |` ( A i^i B ) ) = (/) )
3 1 2 eqtr3id
 |-  ( ( A i^i B ) = (/) -> ( ( R |` A ) i^i ( R |` B ) ) = (/) )