Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( u = A -> ( u = v <-> A = v ) ) |
2 |
|
eceq1 |
|- ( u = A -> [ u ] R = [ A ] R ) |
3 |
2
|
ineq1d |
|- ( u = A -> ( [ u ] R i^i [ v ] R ) = ( [ A ] R i^i [ v ] R ) ) |
4 |
3
|
eqeq1d |
|- ( u = A -> ( ( [ u ] R i^i [ v ] R ) = (/) <-> ( [ A ] R i^i [ v ] R ) = (/) ) ) |
5 |
1 4
|
orbi12d |
|- ( u = A -> ( ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) |
6 |
|
eqeq2 |
|- ( v = A -> ( u = v <-> u = A ) ) |
7 |
|
eceq1 |
|- ( v = A -> [ v ] R = [ A ] R ) |
8 |
7
|
ineq2d |
|- ( v = A -> ( [ u ] R i^i [ v ] R ) = ( [ u ] R i^i [ A ] R ) ) |
9 |
8
|
eqeq1d |
|- ( v = A -> ( ( [ u ] R i^i [ v ] R ) = (/) <-> ( [ u ] R i^i [ A ] R ) = (/) ) ) |
10 |
6 9
|
orbi12d |
|- ( v = A -> ( ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
11 |
|
eqeq1 |
|- ( u = A -> ( u = A <-> A = A ) ) |
12 |
2
|
ineq1d |
|- ( u = A -> ( [ u ] R i^i [ A ] R ) = ( [ A ] R i^i [ A ] R ) ) |
13 |
12
|
eqeq1d |
|- ( u = A -> ( ( [ u ] R i^i [ A ] R ) = (/) <-> ( [ A ] R i^i [ A ] R ) = (/) ) ) |
14 |
11 13
|
orbi12d |
|- ( u = A -> ( ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) <-> ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) ) ) |
15 |
5 10 14
|
2ralunsn |
|- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ ( A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) /\ ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) ) ) ) ) |
16 |
|
eqid |
|- A = A |
17 |
16
|
orci |
|- ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) |
18 |
17
|
biantru |
|- ( A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) <-> ( A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) /\ ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) ) ) |
19 |
18
|
anbi2i |
|- ( ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) <-> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ ( A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) /\ ( A = A \/ ( [ A ] R i^i [ A ] R ) = (/) ) ) ) ) |
20 |
15 19
|
bitr4di |
|- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) ) |
21 |
|
eqeq1 |
|- ( u = v -> ( u = A <-> v = A ) ) |
22 |
|
eqcom |
|- ( v = A <-> A = v ) |
23 |
21 22
|
bitrdi |
|- ( u = v -> ( u = A <-> A = v ) ) |
24 |
|
eceq1 |
|- ( u = v -> [ u ] R = [ v ] R ) |
25 |
24
|
ineq1d |
|- ( u = v -> ( [ u ] R i^i [ A ] R ) = ( [ v ] R i^i [ A ] R ) ) |
26 |
|
incom |
|- ( [ v ] R i^i [ A ] R ) = ( [ A ] R i^i [ v ] R ) |
27 |
25 26
|
eqtrdi |
|- ( u = v -> ( [ u ] R i^i [ A ] R ) = ( [ A ] R i^i [ v ] R ) ) |
28 |
27
|
eqeq1d |
|- ( u = v -> ( ( [ u ] R i^i [ A ] R ) = (/) <-> ( [ A ] R i^i [ v ] R ) = (/) ) ) |
29 |
23 28
|
orbi12d |
|- ( u = v -> ( ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) <-> ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) |
30 |
29
|
cbvralvw |
|- ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) <-> A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) |
31 |
30
|
biimpi |
|- ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) -> A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) |
32 |
31
|
pm4.71i |
|- ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) <-> ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) |
33 |
32
|
anbi2i |
|- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) ) |
34 |
|
3anass |
|- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ ( A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) ) |
35 |
|
df-3an |
|- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) <-> ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) ) |
36 |
33 34 35
|
3bitr2ri |
|- ( ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) /\ A. v e. A ( A = v \/ ( [ A ] R i^i [ v ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
37 |
20 36
|
bitrdi |
|- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |
38 |
|
elneq |
|- ( u e. A -> u =/= A ) |
39 |
38
|
neneqd |
|- ( u e. A -> -. u = A ) |
40 |
39
|
biorfd |
|- ( u e. A -> ( ( [ u ] R i^i [ A ] R ) = (/) <-> ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
41 |
40
|
ralbiia |
|- ( A. u e. A ( [ u ] R i^i [ A ] R ) = (/) <-> A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) |
42 |
41
|
anbi2i |
|- ( ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( [ u ] R i^i [ A ] R ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( u = A \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
43 |
37 42
|
bitr4di |
|- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] R i^i [ v ] R ) = (/) ) /\ A. u e. A ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |