Step |
Hyp |
Ref |
Expression |
1 |
|
resundi |
|- ( R |` ( A u. B ) ) = ( ( R |` A ) u. ( R |` B ) ) |
2 |
1
|
difeq1i |
|- ( ( R |` ( A u. B ) ) \ ( R |` B ) ) = ( ( ( R |` A ) u. ( R |` B ) ) \ ( R |` B ) ) |
3 |
|
difun2 |
|- ( ( ( R |` A ) u. ( R |` B ) ) \ ( R |` B ) ) = ( ( R |` A ) \ ( R |` B ) ) |
4 |
2 3
|
eqtri |
|- ( ( R |` ( A u. B ) ) \ ( R |` B ) ) = ( ( R |` A ) \ ( R |` B ) ) |
5 |
|
disjresdif |
|- ( ( A i^i B ) = (/) -> ( ( R |` A ) \ ( R |` B ) ) = ( R |` A ) ) |
6 |
4 5
|
eqtrid |
|- ( ( A i^i B ) = (/) -> ( ( R |` ( A u. B ) ) \ ( R |` B ) ) = ( R |` A ) ) |