Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | disjsn2 | |- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni | |- ( B e. { A } -> B = A ) |
|
2 | 1 | eqcomd | |- ( B e. { A } -> A = B ) |
3 | 2 | necon3ai | |- ( A =/= B -> -. B e. { A } ) |
4 | disjsn | |- ( ( { A } i^i { B } ) = (/) <-> -. B e. { A } ) |
|
5 | 3 4 | sylibr | |- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |