Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | disjss1f.1 | |- F/_ x A |
|
disjss1f.2 | |- F/_ x B |
||
Assertion | disjss1f | |- ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjss1f.1 | |- F/_ x A |
|
2 | disjss1f.2 | |- F/_ x B |
|
3 | 1 2 | ssrmof | |- ( A C_ B -> ( E* x e. B y e. C -> E* x e. A y e. C ) ) |
4 | 3 | alimdv | |- ( A C_ B -> ( A. y E* x e. B y e. C -> A. y E* x e. A y e. C ) ) |
5 | df-disj | |- ( Disj_ x e. B C <-> A. y E* x e. B y e. C ) |
|
6 | df-disj | |- ( Disj_ x e. A C <-> A. y E* x e. A y e. C ) |
|
7 | 4 5 6 | 3imtr4g | |- ( A C_ B -> ( Disj_ x e. B C -> Disj_ x e. A C ) ) |