Metamath Proof Explorer


Theorem disjsuc

Description: Disjoint range Cartesian product, special case. (Contributed by Peter Mazsa, 25-Aug-2023)

Ref Expression
Assertion disjsuc
|- ( A e. V -> ( Disj ( R |X. ( `' _E |` suc A ) ) <-> ( Disj ( R |X. ( `' _E |` A ) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) )

Proof

Step Hyp Ref Expression
1 disjsuc2
 |-  ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) )
2 df-suc
 |-  suc A = ( A u. { A } )
3 2 reseq2i
 |-  ( `' _E |` suc A ) = ( `' _E |` ( A u. { A } ) )
4 3 xrneq2i
 |-  ( R |X. ( `' _E |` suc A ) ) = ( R |X. ( `' _E |` ( A u. { A } ) ) )
5 4 disjeqi
 |-  ( Disj ( R |X. ( `' _E |` suc A ) ) <-> Disj ( R |X. ( `' _E |` ( A u. { A } ) ) ) )
6 disjxrnres5
 |-  ( Disj ( R |X. ( `' _E |` ( A u. { A } ) ) ) <-> A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) )
7 5 6 bitri
 |-  ( Disj ( R |X. ( `' _E |` suc A ) ) <-> A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) )
8 disjxrnres5
 |-  ( Disj ( R |X. ( `' _E |` A ) ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) )
9 8 anbi1i
 |-  ( ( Disj ( R |X. ( `' _E |` A ) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) )
10 1 7 9 3bitr4g
 |-  ( A e. V -> ( Disj ( R |X. ( `' _E |` suc A ) ) <-> ( Disj ( R |X. ( `' _E |` A ) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) )