Step |
Hyp |
Ref |
Expression |
1 |
|
disjsuc2 |
|- ( A e. V -> ( A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |
2 |
|
df-suc |
|- suc A = ( A u. { A } ) |
3 |
2
|
reseq2i |
|- ( `' _E |` suc A ) = ( `' _E |` ( A u. { A } ) ) |
4 |
3
|
xrneq2i |
|- ( R |X. ( `' _E |` suc A ) ) = ( R |X. ( `' _E |` ( A u. { A } ) ) ) |
5 |
4
|
disjeqi |
|- ( Disj ( R |X. ( `' _E |` suc A ) ) <-> Disj ( R |X. ( `' _E |` ( A u. { A } ) ) ) ) |
6 |
|
disjxrnres5 |
|- ( Disj ( R |X. ( `' _E |` ( A u. { A } ) ) ) <-> A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) ) |
7 |
5 6
|
bitri |
|- ( Disj ( R |X. ( `' _E |` suc A ) ) <-> A. u e. ( A u. { A } ) A. v e. ( A u. { A } ) ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) ) |
8 |
|
disjxrnres5 |
|- ( Disj ( R |X. ( `' _E |` A ) ) <-> A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) ) |
9 |
8
|
anbi1i |
|- ( ( Disj ( R |X. ( `' _E |` A ) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) <-> ( A. u e. A A. v e. A ( u = v \/ ( [ u ] ( R |X. `' _E ) i^i [ v ] ( R |X. `' _E ) ) = (/) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) |
10 |
1 7 9
|
3bitr4g |
|- ( A e. V -> ( Disj ( R |X. ( `' _E |` suc A ) ) <-> ( Disj ( R |X. ( `' _E |` A ) ) /\ A. u e. A ( ( u i^i A ) = (/) \/ ( [ u ] R i^i [ A ] R ) = (/) ) ) ) ) |